В защиту науки (Бюллетень 7) - страница 79

Шрифт
Интервал

стр.

Далее, при сравнительно медленном расширении Вселенной (а именно так обстоит дело сейчас и обстояло в обозримом прошлом) вакуум остается одним и тем же. Свойства вакуума определяются физикой сверхмалых расстояний и времен, и на них медленное расширение Вселенной не отражается. Поэтому, опять-таки как и требуется, плотность энергии вакуума не зависит от времени. Как мы говорили выше, в общей теории относительности последнее свойство автоматически означает, что энергия вакуума приводит к ускоренному расширению Вселенной. Таким образом, вакуум – это в самом деле подходящий кандидат на роль носителя темной энергии.

Подчеркнем, что отсутствие зависимости плотности энергии от положения в пространстве и от времени – это точные, а не приближенные свойства вакуума, что отличает его от других кандидатов на роль темной энергии. Плотность энергии вакуума – это мировая константа (по крайней мере в той части Вселенной, которую мы наблюдаем). Надо сказать, что эту константу – космологическую постоянную, Л-член – вводил в свои уравнения еще Эйнштейн. Он, правда, не отождествлял ее с энергией вакуума, но это – вопрос терминологии, по крайней мере при современном понимании существа дела. Позже Эйнштейн от своей идеи отказался – возможно, напрасно.

Почему же представление о темной энергии как энергии вакуума не удовлетворяет многих физиков? В первую очередь это связано с несуразно малым значением плотности энергии вакуума, которое необходимо для согласия теории и наблюдений.

В вакууме все время рождаются и умирают виртуальные частицы, в нем имеются конденсаты полей – в общем, вакуум скорее похож; на сложную среду, чем на абсолютную пустоту. Это не просто домыслы: особенности вакуума находят свое проявление в свойствах элементарных частиц и их взаимодействий и в конечном итоге определяются, хотя и косвенно, из многочисленных экспериментов. Энергия вакуума в принципе должна была бы «знать» о том, как он устроен, какова его структура и каковы значения характеризующих его параметров (например, конденсатов полей).

Теперь представим себе теоретика, который изучил физику элементарных частиц, но ничего не слышал о Вселенной. Попросим этого теоретика предсказать плотность энергии вакуума. Исходя из масштабов энергий, характерных для фундаментальных взаимодействий, и соответствующих масштабов длин, он сделает свою оценку – и ошибётся в невообразимое число раз. Мы уже говорили об этом: энергетический масштаб фундаментальных взаимодействий – по крайней мере 200 миллионов электронвольт, а требуемый из наблюдений масштаб, соответствующий энергии вакуума (если темная энергия – это энергия вакуума) – 0,002 электронвольта. Это несоответствие можно выразить и так: наш теоретик предсказал бы такую большую энергию вакуума и такой вызванный ей темп расширения Вселенной, что дома на соседней улице должны были бы разлетаться от нас со скоростями, близкими к скорости света!

Проблему энергии вакуума можно пояснить и несколько иначе. Да, в нашей Вселенной эта энергия очень близка к нулю. Представим теперь себе другую вселенную, где все так же, как у нас, только, скажем, массы элементарных частиц слегка отличаются от наших. Так вот, если это отличие составляет всего одну миллиардную долю, то энергия вакуума в этой другой вселенной будет в триллионы раз больше нашей (по абсолютной величине). Спрашивается, как же в нашей Вселенной произошла такая тонкая подстройка?

Проблема энергии вакуума (ее еще называют проблемой космологической постоянной) ставила в тупик физиков-теоретиков задолго до открытия темной энергии. Так, в 20-х – 30-х годах прошлого века эта проблема волновала В. Паули*), который в 1933 году писал: «Эта энергия [вакуума; тогда использовали термин «энергия нулевой точки», «Nullpunktsenergie»] должна быть ненаблюдаемой в принципе, поскольку она не излучается, не поглощается, не рассеивается … и поскольку, как очевидно из опыта, она не создает гравитационного поля». Почему так происходит? Одна из возможностей состоит в том, что энергия пустого пространства каким-то образом все же изменяется со временем и, в конце концов, становится близкой к нулю. Конкретные теоретические модели, иллюстрирующие эту возможность, построить чрезвычайно трудно, но можно; еще труднее вписать их в космологический контекст. И уж совсем непонятно, как на этом пути получить объяснение того, что энергия вакуума не настолько близка к нулю, чтобы быть несущественной для космологии, а наоборот, что она принимает требуемое значение. Сделать этого до сих пор никому не удалось.


стр.

Похожие книги