Удивительная логика - страница 83

Шрифт
Интервал

стр.

как правило, не употребляется: обычно под словосочетанием возраст отца понимается возраст этого человека, а не что-либо иное.


77. Сначала надо разделить 24 килограмма гвоздей на две равные части по 12 килограммов, уравновесив их на чашах весов. Затем так же разделить 12 килограммов гвоздей на две равные части по 6 килограммов. После этого отложить одну часть, а другую разделить таким же способом на части по 3 килограмма. Наконец к шестикилограммовой части гвоздей добавить эти 3 килограмма. В результате получится 9 килограммов гвоздей.


78. Это был четверг. В этот день Петр правдиво сказал, что вчера (т. е. в среду) он лгал, а Иван солгал насчет того, что вчера (т. е. в среду) он лгал, ведь по условию в среду он говорит правду.


79. Это число 147.


80.

81. В 1001 раз. Для того чтобы установить это, надо шестизначное число, полученное путем дублирования трехзначного числа, разделить на это трехзначное число. Получится 1001 (см. также задачу 51).


82. Ошибка данного рассуждения заключается в утверждении, что если бы не было времени, то не было бы ни одного дня, а значит, всегда стояла бы ночь. Как раз наоборот – если бы не было времени, то не могло бы быть ни одного дня и ни одной ночи, ведь понятие ночи (как и понятие дня) относится именно ко времени (и день, и ночь – это некие временные интервалы).


83. Примем число яблок, которые взяла Настя из первой корзины, за х, тогда в первой корзине осталось (12 – х) яблок. Именно столько яблок и взяла Маша из второй корзины. Значит, во второй корзине осталось

(12 – (12 – х)) яблок.

В двух корзинах вместе осталось

(12 – х) + 12 – (12 – х) = 12 – х + 12–12 + х = 12.

В двух корзинах вместе осталось 12 яблок.


84. Этого не может сказать ни одна свинья, ведь свиньи, как известно, не говорят. Эта не очень серьезная задача основана на двусмысленности вопроса: «Сколько свиней могут сказать…?» Слово «сказать» в этом вопросе можно понимать буквально – говорить членораздельной человеческой речью, а также его можно воспринимать в переносном значении – кто-то говорит от имени или за тех, которые сами говорить не могут (не умеют).


85. Сапожник и плотник – это одно лицо. В этом легко убедиться, составив простую схему:

86. Рассуждение неверно. Ошибка заключается в смешивании двух различных ситуаций в одних и тех же словах. Когда рабочие строят дом, их усилия складываются, поэтому работа идет быстрее и выполняется за более короткий срок. Когда корабли пересекают Атлантический океан, то их «усилия» не складываются: каждый корабль преодолевает океан все равно в одиночку, и поэтому время, затраченное на переправу через океан, не уменьшается при увеличении количества кораблей.


87. Стрелка у весов была сдвинута не вправо от нуля, а влево, т. е. весы показывали на 1 килограмм меньше. Значит, Петин портфель весит 3 килограмма, а Сашин – 4 килограмма. Вместе их портфели весят 7 килограммов. Когда мальчики их взвесили, весы показали на 1 килограмм меньше, т. е. 6 килограммов.


88. На первый взгляд, подобным образом можно расположить только 9 кружочков, но ведь в условии не сказано, что ряды кружочков должны быть горизонтальными или вертикальными. Они могут быть какими угодно. Расположить кружочки можно различными способами (рис. 63).

89. Может показаться, что оставшегося куска хватит на семь стирок. Однако это не так. Если длина, ширина и высота куска мыла уменьшились вдвое, то его объем уменьшился не в 2 раза, а в 8 раз:

Если после семи стирок объем куска мыла уменьшился в 8 раз, значит, оставшегося куска хватит всего на одну стирку (рис. 64).

90. Кусок материи в 2/3 метра надо сложить пополам. Образовавшаяся линия сгиба поделит его на две равные части по 1/3 метра. Затем надо сложить его еще раз пополам. Образовавшиеся линии сгиба поделят кусок материи на четыре равные части по 1/6 метра. Три таких части – это 3/6 метра, или искомая 1/2 метра (рис. 65).

91. Конечно же, композитором, равно как и художником, писателем или ученым, надо родиться, ведь если человек не родится, то он не сможет сочинять музыку, рисовать картины, писать романы или делать научные открытия. Эта шуточная задача основана на двусмысленности вопроса: «Действительно ли надо родиться?» Данный вопрос можно понимать буквально: надо ли рождаться на свет для того, чтобы заниматься каким-либо видом деятельности; а также данный вопрос можно понимать в переносном смысле: является ли талант композитора (художника, писателя, ученого) врожденным, данным от природы или же он приобретается во время жизни упорным трудом.


стр.

Похожие книги