Иногда говорят, что Гильберт считал, будто работа математика должна сводиться к механическому процессу: он, словно компьютер, должен вычислять, но не думать. Но это не так. Механический характер носит только проверка справедливости аргументов, использованных математиком, а не открытие самих аргументов. Чтобы подчеркнуть эту разницу, Гильберт говорил о двух науках: математике и метаматематике. Объектом второй науки, механической и связанной с конечностью, была бы проверка методов первой.
АКСИОМЫ ПЕАНО
Давид Гильберт в качестве одной из кардинальных проблем представил нахождение множества аксиом арифметики, которые позволили бы доказать все истины теории (не упоминая необходимости механической проверки правильности использованных рассуждений). В своем докладе Гильберт не указал на существующие работы по этой теме. Это упущение вызвало недовольство Джузеппе Пеано — итальянского математика, присутствовавшего на лекции Гильберта. В1889 году он предложил аксиомы арифметики, считая, что они позволят вывести все истинные арифметические высказывания. Аксиомы Пеано, как они известны сегодня, имеют в качестве первичных элементов число 1, знаки сложения (+) и умножения (·) и функции последующего элемента (S).
— Аксиома 1: S(x) никогда не равно 1, то есть 1 не является последующим членом ни для какого числа.
— Аксиома 2: если S(x) = S(y), то х = у.
— Аксиома 3: х + 1 = S(x).
— Аксиома 4: х + S(y) = S(x + у).
— Аксиома 5: х · 1 = х.
— Аксиома 6: х · S(y) = х · у + х.
— Аксиома 7: если можно доказать, что 1 выполняет некое свойство, х его выполняет и S(x) — тоже, то можно сделать вывод: это свойство справедливо для всех натуральных чисел.
Последняя аксиома, также называемая схемой индукции, выражает тот факт, что все натуральные числа получаются на основе единицы повторяющимся применением функции последующего элемента. Если свойство справедливо для числа 1 и мы можем быть уверены, что оно будет распространяться на каждое число, выраженное последующим элементом, то это свойство будет справедливо для всех натуральных чисел. Следствие из теоремы Гёделя состоит в том, что если учитывать условие алгоритмической проверки всех рассуждений, то будут существовать арифметические истины, недоказуемые на основе этих аксиом. Таким образом, арифметика будет неполной.
С 1920 по 1930 год Гильберт опубликовал ряд статей, в которых постепенно излагал свою программу и показывал, как ее можно осуществить на практике. Другие математики увлеклись этой идеей и внесли значительный вклад в ее осуществление. Сам Гёдель в 1929 году, защищая докторскую диссертацию, показал, что можно установить методы рассуждения, правильность которых может быть проверена алгоритмически. В том же году польский математик Мойжеш Пресбургер представил ряд аксиом, непротиворечивость которых можно было проверить алгоритмически. Они позволяли доказать хотя и не все арифметические истины, но их значительную часть. Это были две важные победы формальной программы.
В то же время интуиционизм терял авторитет среди математиков. Многие из тех, кто симпатизировал общим идеям Брауэра, начинали чувствовать, что их реализация на практике, предполагавшая отказ от рассуждений из области теории множеств, принесет больше потерь, чем преимуществ. Формальная программа, в свою очередь, предлагала альтернативу, которая была допустима с философской точки зрения и осуществима на практике.
К 1930 году стало ясно, что Гильберт победил. Оставалось только помочь интуиционистам сохранить лицо и достойно сдаться. В Кёнигсберге, родном городе Гильберта (выбор, конечно, не случаен), был организован конгресс, посвященный основаниям математики. Он проводился с пятницы 5 сентября по воскресенье 7 сентября; на понедельник было назначено награждение Гильберта званием почетного гражданина Кёнигсберга. Все было готово к великой победе учителя.
В пятницу представляли свои работы менее значимые, неизвестные математики. В субботу выступали более значимые, среди них был Ханс Хан, руководитель докторской диссертации Гёделя. Брауэр, который враждовал с Гильбертом по причинам, выходившим далеко за рамки академической науки, не присутствовал; интуиционистскую точку зрения излагал Аренд Гейтинг. Гильберт, имевший проблемы со здоровьем, также отсутствовал, и его главным представителем был его ученик Джон фон Нейман. На конгрессе присутствовал и представитель логицизма, философ Рудольф Карнап. В воскресенье конгресс закрылся пленарным заседанием, на котором были подведены итоги точек зрения интуиционизма, формализма и логицизма. Резюме подвел Гейтинг. Завершая выступление, он сказал, что отношения между интуиционизмом и формализмом наконец-то прояснились и больше нет необходимости продолжать борьбу между этими школами: «Если выполнится программа Гильберта, даже интуиционисты примут бесконечность с распростертыми объятиями». Интуиционисты сдались. Гильберт победил.