* * *
КОНДЕНСАТЫ БОЗЕ — ЭЙНШТЕЙНА, СВЕРХТЕКУЧЕСТЬ И СВЕРХПРОВОДИМОСТЬ
Некоторые конденсаты Бозе — Эйнштейна, если их достаточно охладить, ведут себя как сверхтекучие жидкости. Сверхтекучая жидкость — это жидкость с нулевой вязкостью: она никак не сопротивляется изменению формы, и из-за этого ее поведение очень отличается от поведения обычной жидкости. Например, если поместить сверхтекучую жидкость в сосуд, она будет стремиться выйти из него и собраться на земле, где потенциальная энергия меньше.
Наглядное представление способности жидкого гелия выходить за пределы тел, с которыми он контактирует.
Хотя электроны являются фермионами, а не бозонами, электроны некоторых металлов могут соединяться в пары, так называемые пары Купера, которые ведут себя как бозоны. При низких температурах эти пары создают сверхтекучую жидкость электронов, и это означает, что подобный материал может проводить электричество без какого-либо сопротивления. Такое свойство называется сверхпроводимостью и имеет большое технологическое применение: с ним, например, связана возможность поддерживать в воздухе магнитопланы или конструировать мощные магниты Большого адронного коллайдера — ускорителя частиц, построенного в ЦЕРНе.
* * *
Хотя статистики Ферми — Дирака и Бозе — Эйнштейна были разработаны для работы с физическими явлениями, их применение (впрочем, это справедливо для любого хорошего математического инструмента) вышло далеко за пределы физики. Например, статистика Бозе — Эйнштейна используется при изучении комплексных сетей.
Комплексную сеть можно рассматривать как ряд узлов, связанных между собой некоторыми законами, регулирующими появление и связь новых узлов. Существует большое количество систем, которые можно смоделировать как комплексные сети, например группа друзей какого-то человека: каждый индивид связан со своими друзьями, которые, в свою очередь, связаны с другими, и эти связи образуют развитую сеть. Любопытный результат теории комплексных сетей состоит в том, что у человека обычно меньше друзей, чем у его друзей в среднем. Это можно объяснить тем, что некоторые узлы сети стремятся сконцентрировать на себе множество связей, и, следовательно, вероятность быть связанным с таким узлом выше, чем с узлом с небольшим количеством связей.
Это справедливо и для числа людей, с которыми у человека были в течение жизни любовные отношения: теория комплексных сетей утверждает, что в среднем у партнера таких отношений было больше. Это связано с тем, что гораздо вероятнее образовать пару с человеком, у кого было много других партнеров, чем с тем, у кого их было очень мало.
Теорию сетей можно использовать и для моделирования мозга, при этом нейроны рассматриваются как узлы, а также для того, чтобы математически представить связи между людьми в социальных сетях или объяснить число ссылок между сайтами. Другое важное применение, возникшее совсем недавно, заключалось в анализе концентрации богатства: Джеймс Глаттфельдер (1972) провел исследование, в котором пытался выяснить, кому принадлежит большинство предприятий планеты.
Для этого он использовал комплексную сеть, в которой узлы были компаниями или индивидами, а связи между узлами устанавливались в зависимости от процентного соотношения владения. Глаттфельдер выяснил, что 43 тысячи проанализированных компаний контролируются одним процентом членов общества, образуя взаимосвязанную и нестабильную сеть.
В 2001 году Джинестра Бьянкони, будучи еще аспиранткой Университета Нотр-Дам, поняла, что существуют идеальные параллели между комплексными сетями и конденсатами Бозе — Эйнштейна. Если представить узлы сети в качестве вариантов доступной энергии, а связи между ними — в качестве частиц, становится очевидно, что сеть ведет себя как бозонный газ при низкой температуре: частицы стремятся к состояниям с более низкой энергией. Этот эффект проявляется во всех типах сетей, как социальных, так и экономических. Например, в случае с интернетом и рынком существует эффект, называемый преимуществом первого пользователя, при котором первая компания, создающая некоторый тип продукта, или первые пользователи социальной сети получают наибольшее количество преимуществ. Это также соответствует нашей модели, в которой этих первых пользователей можно считать состояниями низкой энергии системы, что создает скопление частиц или появление связей между ними. Пользуясь этой моделью, можно объяснить различные вещи: от структуры друзей в социальных сетях до связи между ссылками на сайты.