Нормальное распределение связано с биномиальным распределением, о котором мы говорили ранее. При очень большом числе попыток биномиальное распределение описывает кривую Гаусса.
Связь между биномиальным и нормальным распределениями. Прямые показывают биномиальное распределение, вокруг которого проходит нормальное распределение.
Действительно, для получения знаменитого распределения вероятностей для газа Больцман начал рассматривать дискретные значения энергии как биномиальную функцию и затем перешел к бесконечно большому их числу, что привело его к распределению Гаусса.
Микро- и макросостояния
Познакомившись с теорией вероятностей, пора применить полученные знания к описанию газа. Для этого нам потребуются такие понятия, как микросостояния и макросостояния.
Предположим, что у нас есть газ, обладающий некоторым давлением, объемом и температурой. Нам известны макроскопические характеристики газа, но мы не знаем, под каким давлением находится каждая его молекула и с какой скоростью она движется. Итак, можно сказать, что мы знаем макроскопическое состояние газа, но не микроскопическое. Это макроскопическое состояние газа называется макросостоянием.
Макросостоянию могут соответствовать тысячи миллионов микроскопических состояний: например, поменяв положение и скорость любой пары частиц, мы получаем систему, на первый взгляд, с теми же свойствами. Поскольку у нас тысячи миллионов частиц, существует огромное количество микроскопических состояний, согласующихся с тем, что мы наблюдаем в лаборатории. Эти микроскопические состояния, которых невозможно добиться экспериментально, называются микросостояниями. Каждому макросостоянию в целом соответствуют тысячи миллионов микросостояний, которые порождают одно и то же поведение в крупном масштабе.
Теперь обратим внимание на газ, обладающий некоторым количеством возможных макросостояний, каждому из которых соответствуют некоторое давление, температура и объем. Мы хотим узнать, в каком из этих макросостояний находится газ. Поскольку макроскопические характеристики газа связаны с распределением скоростей его молекул, на самом деле мы хотим узнать это распределение.
Как мы видели, для этого мы не можем воспользоваться уравнениями Гамильтона, но зато мы можем использовать различные результаты, полученные ранее: например, то, что, перейдя в состояние равновесия, газ не выйдет из него и что все микроскопические конфигурации — или микросостояния — в нашей области фазового пространства равновероятны.
Поскольку все микросостояния равновероятны, разумно предположить, что макросостояние с наибольшим числом совместимых микросостояний будет наиболее вероятным. Если вероятность некоторого макросостояния намного выше, чем у любого другого, мы можем сделать вывод, что газ находится в нем. То есть наше макросостояние будет тем, для которого распределение скоростей наиболее вероятно.
Теперь нам осталось только выяснить, какое из возможных распределений скоростей имеет самую высокую вероятность.
Чтобы рассмотреть возможные состояния, нам нужно сделать небольшое упрощение: предположим, что все молекулы могут обладать только определенными значениями энергии, а не любыми в некотором диапазоне. Как только мы получим интересующее нас выражение, мы ослабим это условие. Энергии и скорости пропорциональны, так что, узнав распределение энергии, мы получим распределение скоростей.
Присвоим число каждому из этих значений энергии, от одного до k. У нас всего N частиц; число частиц с энергией i будет обозначаться N>i. То есть если у нас есть 50 частиц первого уровня энергии, то N>1 = 50. Теперь предположим, что у нас есть некоторое распределение энергии.
Мы хотим узнать, сколько комбинаций частиц дает нам именно это распределение. У нас всего 200 частиц, из которых 50 находятся на первом уровне энергии.
Пронумеруем наши частицы от одного до 200. Сколько существует возможных комбинаций, при которых на этом уровне находятся 20 частиц? Чтобы выяснить это, воспользуемся стратегией, очень похожей на ту, что мы применяли с биномиальным распределением.