— количество систем в совокупности всегда одинаково;
— область, которую занимает совокупность в фазовом пространстве, всегда одинакова.
Если рассматривать точки нашей совокупности, как будто это частицы, движущиеся по пространству из многих измерений, это означает, что они ведут себя как несжимаемый флюид: траектории никогда не пересекаются, и невозможно сжать область, которую занимает одна из них. Этот вывод известен как теорема Лиувилля.
Теперь у нас есть почти все необходимые элементы, чтобы спрогнозировать распределение скоростей в газе. С одной стороны, мы знаем, что область, которую занимает наша совокупность в фазовом пространстве, не изменится; с другой стороны, если газ находится внутри границы, он останется внутри нее.
Нам не хватает только одной детали, которую необходимо ввести вручную, поскольку она не следует из уравнений Гамильтона. Вспомним, что состояние газа представлено точкой на фазовой диаграмме и что эта точка постепенно движется, описывая траекторию в рамках границы, которая очерчивает нашу совокупность.
Выдвинем гипотезу о том, что газ в конце концов пройдет по всем точкам фазового пространства, или, другими словами, что у всех этих точек одинаковая вероятность быть занятыми. Этот принцип называется принципом равновероятности начальных состояний. Теперь у нас действительно достаточно условий для вычисления распределения скоростей и положений газа. Осталось только изложить теорию вероятностей.
Теория вероятностей
Предположим, что мы хотим спрогнозировать, что будет делать какой-то человек в воскресенье вечером. Как бы хорошо мы его ни знали, нам сложно угадать: люди иногда меняют свое мнение внезапно, и это придает их поведению некоторую хаотичность. Даже человек, который привык ходить в кино каждое воскресенье, однажды может проснуться с болью в желудке и остаться дома.
Учитывая сложность, которая таится в прогнозировании поведения человека, резонно предположить, что предсказать поведение миллионов людей еще сложнее. Но в действительности оказывается наоборот: каждый человек непредсказуем, но миллион людей ведут себя известным образом. Мы не можем знать, пойдет ли наш друг смотреть фильм в это воскресенье, но можем быть уверены, что определенный процент населения это сделает. Если нас интересует прогноз, сколько заработает кинотеатр в течение года, у нас более чем достаточно информации.
То же самое происходит с переменными, еще более хаотичными, чем человек, такими как результат броска игрального кубика. Невозможно узнать, получим ли мы при следующем броске три, но мы можем быть почти уверены, что на каждый миллион бросков количество выпавших троек составит одну шестую. Если бы результат многочисленных бросков был таким же непредсказуемым, как и одного, казино давно разорились бы.
Идея о том, что миллион человек более предсказуем, чем три, делает возможным и изучение газов. Именно тот факт, что число его молекул огромно, превращает газ в крайне регулярный объект, и мы можем использовать для прогнозирования теорию вероятностей. Хотя мы и не можем знать, как поведет себя каждая отдельная молекула, в случаях когда речь идет об огромном их числе, неизвестность уступает место предсказуемому поведению.
Вероятность и газ
Прежде чем сосредоточиться на поведении газа в состоянии равновесия, рассмотрим наиболее простые примеры теории вероятностей для разработки необходимого математического аппарата. Начнем с классического подбрасывания монеты, чтобы затем расширить эту модель на газ с частицами, обладающими разной энергией.
Предположим, что мы подбрасываем монетку в воздух больше миллиона раз. Мы знаем, что, согласно теории вероятностей и здравому смыслу, мы получим в половине случаев орла и в половине — решку. Вероятность какого-то события измеряется отношением к единице, то есть вероятность в 50 % выражается как 0,5. Итак, вероятность получить орла — 0,5. Поскольку вероятность получить решку также 0,5, можно заметить, что вероятность получить либо орла, либо решку равна единице, то есть 100 %. Это общий закон вероятностей: если даны все возможные результаты, сумма вероятностей их получения должна быть равна единице.