Том 35. Пока алгебра не разлучит нас. Теория групп и ее применение - страница 45
112
отношение f>13 к f>1 через все промежуточные частоты так, что частоты, записанные в знаменателе и числителе, последовательно сократятся:
f>13 / f>1 = f>13 / f>12 · f>12 / f>11 · ... · f>3 / f>2 · f>2 / f>1
В равномерно темперированном строе все множители в приведенном выше произведении равны одной и той же величине (обозначим ее через d). Следовательно, отношение f>13 к f>1 равно 2, а также равно числу d, умноженному само на себя 12 раз.
Таким образом, получим уравнение d>12 = 2. С помощью этого уравнения для любой данной частоты мы всегда можем вычислить частоту следующей ноты, умножив ее на корень 12-й степени из 2, который равен примерно 1,05946. К примеру, если частота ноты ля, как мы уже говорили, равна 440 Гц, то частота ноты си (на две клавиши «выше») будет равна примерно 494 Гц, а частота ноты соль (на две клавиши «ниже») — около 392 Гц.
до - 261,63
до-диез - 277,18
ре - 293,66
ре-диез - 311,13
ми - 329,63
фа - 349,23
фа-диез - 369,99
соль - 392
соль-диез - 415,30
ля - 440
ля-диез - 466,16
си - 493,88
Таблица частот для основных нот пианино.
ЛЕВИ-СТРОСС: Получается, частота ноты ля в 440 Гц выбрана по договоренности, а частоты всех остальных нот определяются однозначно.
ВЕЙЛЬ: Да, но при условии, что октава делится на 12 нот так, что соотношение между частотами соседних нот всегда будет неизменным. Таковы основные предпосылки равномерно темперированного строя. Впрочем, инструменты в оркестрах не всегда настраиваются точно так, как мы объяснили. Кроме того, музыкальный строй в современной музыке серьезно отличается, не говоря уже о музыке других культур, где используются совершенно иные системы. В индийской музыке, к примеру, равномерно темперированного строя нет.
ЛЕВИ-СТРОСС: Мне стыдно признаться, но я почти не интересовался так называемой этнографической музыкой. В моих экспедициях в Бразилии мне довелось услышать несколько удивительных мелодий, сегодня забытых.
113
Мне помнится, что в звуках флейт индейцев намбиквара я различил мелодию «Действа старцев — человечьих праотцов» из «Весны священной» Стравинского. В поездке я потратил много сил на то, чтобы как можно точнее записать услышанную музыку, насколько мне позволяли знания. По возвращении во Францию мой знакомый пианист помог мне улучшить партитуры и исполнил их. Так я смог выбрать те мелодии, что точнее всего осели в моей памяти. Знаете, что произошло потом? Редактор, ответственный за публикацию партитур, забыл их в такси. Возможно, именно из-за этого случая я вновь всерьез принялся за изучение музыки лишь 30 лет спустя, хотя редкие дни моей жизни не сопровождались произведениями Равеля, Дебюсси или Шопена.
Один из их этюдов особенно помог мне избавиться от тоски, охватившей меня в джунглях. Музыка стала путеводной нитью моих «Мифологик». Сперва я думал, что музыка поможет организовать сложный материал со множеством вариаций одной и той же темы. Все мы поступаем так же — даже вы, господин Вейль, в своих записках не обошли музыку стороной. Последняя глава — это балет-буфф с прелюдией, фугой и интермеццо. Впрочем, я вскоре обнаружил еще одну, более глубокую причину: когда просветительскую функцию древних мифов взяли на себя романы, музыка пришла на смену агонизирующей мифологии. Должно быть, именно эта мысль сыграла ключевую роль в создании тетралогии «Кольцо Нибелунгов» Вагнера.
ВЕЙЛЬ: Вернемся к теме нашего разговора. Позвольте напомнить: только что вы сами сказали, что если мы отсчитаем 13 клавиш от данной ноты, то получим прежнюю ноту, но на октаву выше. Октава делится на 12 частей. Благодаря этому принципу теория групп может сыграть интересную роль в изучении музыкальной гармонии. На самом деле мы используем одну и ту же ноту, например ля, для обозначения разных звуков, отстоящих друг от друга на одну октаву.
Не будем далеко ходить за примером — на клавиатуре пианино восемь разных ля, и, по сути, мы могли бы сдвигать их на одну октаву выше и ниже до бесконечности, если бы человеческие уши различали неограниченный диапазон частот. Согласно приведенным выше вычислениям, будем называть нотой ля все ноты с частотой 33, 110, 220, 440, 880, 1760 Гц и так далее. Эта ситуация вовсе не нова — вспомните, когда я рассказывал о группе часов, то объяснил, что при взгляде на циферблат мы никак не можем различить шесть утра, шесть вечера, шесть утра следующего дня и шесть вечера предыдущего дня. Одна октава вверх — двенадцать часов вперед. Одна октава вниз — двенадцать часов назад. Нет никакой разницы! Поэтому очень удобно представить клавиатуру пианино в виде так называемого додекафонического круга.