Еще в начале XIX века «король математиков» Карл Фридрих Гаусс опубликовал труд «Общие исследования о кривых поверхностях», в котором отразил итоги своей работы над проблемами геодезической съемки. Он разработал новые вычислительные методы, в которых использовались криволинейные координаты поверхности: при измерении сложной среды каждое изменение рельефа становится новой точкой отсчета.
Проследим путь из точки А до точки В. Если он проходит по ровной плоскости, то это одна величина. Если же на плоскости встречаются углубления или выпуклости, длина отрезка пути изменится. Заслуга Гаусса заключается в создании новой математической функции, которая позволяла рассчитать расстояние между любыми двумя точками на поверхности и определить кривизну (отклонение от евклидовой плоскости).
Преемником Гаусса был немецкий математик Бернхард Риман, он создал новый раздел геометрии, исследующий многомерные пространства и кривизну поверхности. Этот раздел в его честь назвали римановой геометрией. В своих исследованиях Риман вплотную подошел к границе, где геометрия соприкасалась с физикой, пойти дальше он не смог, так как был математиком. Эту границу удалось пересечь универсальному гению Альберту Эйнштейну.
Любую поверхность можно описать по-разному, используя различные системы координат. На геометрические свойства самой поверхности способ описания, естественно, не влияет. Расстояние между двумя точками остается неизменным в любой системе координат (является инвариантом). На языке геометрии этот основополагающий принцип звучит так: «Инварианты, такие как расстояние и кривизна, одинаковы в любой системе координат». Эйнштейну этот математический постулат напомнил схожий принцип из физики: «Любое физическое явление протекает одинаково во всех инерциальных системах отсчета». Подойдя к проблеме с другой стороны, он снова нашел стык геометрии и физики. Развивая мысль дальше, он задумался о том, может ли принцип относительности, действующий в инерциальных системах отсчета (о нем шла речь в специальной теории относительности), действовать в ситуациях с переменной скоростью? Это было переходом от специальной теории относительности к общей.
Как устроено мироздание: общая теория относительности
В создании общей теории относительности не последнюю роль сыграли открытия немецкого математика Германа Минковского. Он предложил геометрическое описание четырехмерной модели пространства-времени, которая была использована Эйнштейном. Эта модель получила название пространства Минковского.
Представить пространство, состоящее из четырех измерений – длина, ширина, глубина и время, довольно сложно. Математики оперируют формулами и изображениями на плоскости, которые являются лишь отображениями этого пространства. Любое действие можно изобразить на оси координат. Например, для изображения перемещения мухи по стеклу логично использовать двухмерную плоскость с двумя осями координат Для графического описания полета птицы удобнее будет взять трехмерную систему координат, с добавлением третьей оси.
Любое перемещение связано со временем, значит, нужно ввести четвертую систему координат. И тогда мы получим четырехмерную гиперповерхность, где каждое событие может быть отмечено, кроме трех привычных, еще и четвертой величиной – временем. Графически это будет выглядеть довольно сложно, так как время – это не просто точка на графике, а динамические изменения, оно превращает линии, изображенные на бумаге, в траектории движения.
Четырехмерный след, оставляемый любым телом в пространстве и времени, Минковский назвал мировой линией. А весь мир, все существование – совокупностью таких линий.
Ученый ввел в расчеты новую величину – собственное время. Он определил ее как расстояние, но не между двумя положениями тела, а между двумя событиями, произошедшими с этим телом. Из специальной теории относительности мы знаем, что такие величины, как время и пространство, не абсолютны, они могут меняться (растягиваться, сжиматься) в зависимости от системы отсчета. Но к собственному времени это не относится. Оно остается одинаковым при любой смене систем координат. Чтобы понять пространственно-временные изменения в разных системах координат, рассмотрим простой пример. Представим, что возле стены в подвешенном состоянии находится стержень, он освещен двумя фонариками: сверху и со стороны, противоположной стене. Тень на полу в этом случае будет представлять собой точку, тень на стене – линию. Если мы начнем наклонять стержень в плоскости, создаваемой двумя источниками света (в сторону стены), то тени начнут меняться – тень на полу будет удлиняться, пока из точки не превратится в линию, тень на стене поведет себя противоположным образом.