«Физика сверхпроводников переживает период бурного расцвета, — отмечает академик Юрий Третьяков. — Однако в физике до сих пор не существует теории, которая имела бы прогностическую ценность и могла предсказать, где искать сверхпроводники с нужными свойствами. Наука лишь объясняет свойства уже синтезированных материалов. Но универсальной теории сверхпроводников нет».
Прогноз погоды на атомарном уровне
Не поддаются объяснению и другие феномены, присущие твердым телам. Например, некоторые металлические сплавы могут запоминать свою форму. После деформирования предметы, изготовленные из металла, обладающего памятью, вновь принимают первоначальную форму, если их нагреть до определенной температуры или поместить в магнитное поле. Они как будто помнят о своей прежней форме. Однако объяснить поведение этих материалов ученые пока не могут, как и не знают, почему одни материалы обладают памятью, а другие — нет.
Физики затрудняются даже объяснить эффекты, возникающие при взаимодействии света и материи. А ведь подобные эффекты играют важную роль и в природе, и в технике. Как, например, возникает окраска у различных твердых тел? Или как полупроводниковый лазер генерирует световой луч?
Во всех этих феноменах частицы света — фотоны — поглощаются твердой материей, изменяются определенным образом и вновь излучаются. Подобные процессы можно достаточно хорошо описать, но истолковать происходящее трудно.
Причина заключается в том, что внутри твердого тела — громадное количество частиц. Например, в кристалле размером с кусочек сахара содержится больше атомов, чем звезд в Млечном Пути. У любого из атомов есть свои электроны, которые взаимодействуют друг с другом и с кристаллической решеткой. Это и обусловливает свойства твердого тела.
Попытка описать, как меняются эти свойства, равносильна решению любой другой задачи о поведении системы, состоящей из бесчисленного множества отдельных элементов. К таким задачам относятся, например, прогнозирование погоды или описание процессов, происходящих внутри живых организмов. Подобные задачи не решить даже с помощью самых мощных компьютеров. Приходится прибегать к упрощенным расчетным моделям, которые дают лишь приблизительные решения.
Прощание с нашими кремниевыми коллегами
Очевидно, какого-то прогресса поможет достичь нанотехнология. Ее методами можно из отдельных атомов конструировать миниатюрные транзисторы и машины размером в нанометры — миллионные доли миллиметров. Это чрезвычайно важно, поскольку возможности традиционных кремниевых компьютеров скоро будут исчерпаны.
Девиз «Меньше, быстрее, лучше» нигде не проявился так ярко, как в микроэлектронике. Когда в 1971 году был создан первый процессор «Intel-4004», наибольшее число транзисторов на одной микросхеме не превышало 2250. Теперь порядок цифр изменился. Процессор, выпущенный компанией «Intel» тридцать лет спустя, содержал более ста миллионов транзисторов, размещенных на одной микросхеме размером с человеческий ноготь. Толщина самой крохотной структуры — изолирующего слоя из оксида кремния — достигла 1,5 нанометра, то есть оказалась в 100 тысяч раз меньше толщины человеческого волоса.
По оценкам экспертов, объем микросхем ежегодно уменьшается примерно на треть. В минувшие десятилетия ученые не раз полагали, что предел миниатюризации скоро будет достигнут, однако прогнозы оказывались ошибочными. И все же в ближайшее время, действительно, опасения сбудутся, ведь дальнейшей миниатюризации помешают фундаментальные законы физики. Когда элементы микросхемы достигнут атомарных размеров, начнут проявляться эффекты квантовой механики, и работа микросхем станет непредсказуемой. Использовать их в компьютере будет нельзя. Случится это около 2020 года. В дальнейшем же нанотехнология изменит мир так же радикально, как изменила его компьютерная технология.
Новая промышленная революция
Итак, прозвучало одно из ключевых слов XXI века — «нанотехнология», то есть создание материалов и объектов размером в нанометры. Без нанотехнологии, зародившейся лишь в последней четверти века минувшего, невозможно развитие микроэлектроники, биотехнологии, энергетики, робототехники, оптики, фармацевтики. Европейский Союз выделяет на ее развитие больше денег, чем наши власти — на всю российскую науку: по данным на 2004 год, 2,1 миллиарда евро, или двенадцать процентов от общего финансирования научных работ. Нанопродукты — огромный технологический рынок будущего.