>Биопленки можно обнаружить всюду
Некоторым микробам нипочем и радиация. Так, бактерии рода Geobacter способны превращать уран в его оксид — уранинит. Это вещество не растворимо в воде, поэтому его легко можно собрать и тем самым очистить зараженную территорию. В опыте исследователей из Массачусетсского университета популяция бактерий за 50 дней превратила в уранинит 70 процентов выделенного им урана.
Американские исследователи обнаружили в пробах льда, взятых в Гренландии на глубине 3000 метров, — там, где лед частично смешался с вечной мерзлотой, — многочисленные колонии микробов: всего около 40 видов. Поражал их возраст — не менее 120 тысяч лет. Некоторые из них, попав в лабораторию, стали размножаться; только делали это раз в пять медленнее, чем обычные микробы. Возможно, они размножались даже в толще льда, но очень медленно.
>Наружную обшивку кораблей приходится постоянно очищать от покрывающей ее биопленки
Они выжили в самых необычных условиях: на холоде, при почти полном отсутствии кислорода и питательных веществ, при очень высоком давлении. Такие микроорганизмы могли бы населять Марс или спутник Юпитера — Европу.
Пока биологи не могут понять, как выжили эти микробы. Возможно, они пребывали в спячке. Исследования показывают, что микроорганизмы могут выжить в глыбе морского льда при температуре до -40 “С. Лишь тогда замерзает тончайшая водяная оболочка, окутывающая микроб, и кристаллики льда разрезают его. До этого он борется за свое существование, выделяя определенные протеины.
Ученые обратили внимание также на то, что почти все найденные бактерии гораздо меньше обычного: их длина не превышает 0,2 микрометра. Некоторые представляют собой аномальные образцы обычных микробов, и аномальность их вызвана теми суровыми условиями, в которых они оказались. Другие, возможно, таковы по своей природе. Можно только гадать, какими свойствами обладают эти микробы, вернувшиеся с холода.
Бактерия становится батарейкой
Мы открываем все новые способности микробов. Одни — бактерии рода Rhodococcus — выращивают в водном растворе золота крупицы драгоценного металла размером, правда, всего несколько нанометров.
Другие могут вырабатывать полимеры. Так, в бактериях Ralstonia euthropia при избытке пищи, содержащей углерод, образуются молекулы полигидроксиалканоата — вещества, которое обладает теми же свойствами, что и термопласт, но зато, выброшенное на свалку, полностью перегнивает, как жухлая листва. Сейчас ДНК этой бактерии полностью расшифрована. Ученые намерены внедрить ее гены некоторым культурным растениям. Тогда биопластик можно было бы получать из картофеля или кукурузы. По-видимому, из него будет изготавливаться упаковка для продуктов питания. Биопластик произведет революцию и в медицине.
Третьи бактерии готовы вырабатывать электрический ток. Идея использовать их для производства тока не нова; ей уже лет сорок. Известно, что кишечные палочки выделяют из сахара водород. После ряда химических реакций возникает поток электронов, который, впрочем, настолько мал, что его невозможно использовать в промышленных целях. И все же у этого метода есть свои перспективы.
Немецкий химик Уве Шредер предложил покрывать электроды особым полимером — полианилином, который отлично проводит ток. По расчетам Шредера, при использовании подобных электродов раз в десять возрастет поток электронов, а мощность тока будет достаточна, чтобы приводить в движение вентилятор. С помощью бактерий можно вырабатывать ток на очистных сооружениях, а также получать его из компоста и свалок мусора.
Дерек Ловли и Свадес Чодхури из Массачусетсского университета использовали для выработки тока бактерии Rhodoferax ferrireducens, живущие на морском дне. Эффективность выработки тока повысилась. Теперь не нужна промежуточная стадия — получение водорода. Бактерии окисляют сахар, и выделяющиеся при этом свободные электроны начинают движение к графитовому электроду. КПД такого устройства, как сообщает интернетовский журнал «Nature Biotechnology», достигает 80 процентов.
Бактерии-энергетики не очень разборчивы в выборе пищи. Они могут потреблять глюкозу, фруктозу, обычный рафинад и даже ксилозу — древесный сахар. Чодхури и Ловли убеждены, что из отходов сахарного производства со временем можно будет вырабатывать ток.