А. Ах да, позвольте представиться. Карлос Олег Невский. Мать мексиканка, отец русский, военный советник. Родился в Мехико в 2018 году, на три месяца раньше срока — мать во время беременности заболела коревой краснухой. Результат: почти полная слепота (почти — потому что я отличаю темноту от очень яркого света). До пяти лет жил в Мехико, затем отца перевели в российское посольство в Вашингтоне. С тех пор лишь изредка покидал округ Колумбия. Родители развелись, когда мне было десять, а через три года мать уехала обратно в Мехико. До сего дня не могу догадаться, что их оттолкнуло друг от друга: они выясняли отношения вне пределов слышимости. Однако этот случай приучил меня к осторожности.
С 2043 года — профессор математики в университете Джорджа Вашингтона.
ОА. Холодным весенним днем, отправившись за второй чашечкой кофе, я столкнулся в факультетской столовой, где обычно никто не задерживается, с Джереми Блесингеймом.
— Привет, Карлос. Как дела?
— Замечательно, — отозвался я, шаря рукой по столу в поисках сахарницы. — А у вас?
— Тоже неплохо. Правда, мне тут задали одну задачку… Крепкий оказался орешек.
Джереми работал на Пентагон (что-то, связанное с военной разведкой), однако предпочитал не распространяться о своей деятельности, а я, разумеется, никогда не спрашивал.
— Да? — проговорил я, зачерпнув ложкой сахарного песку.
— Понимаете, речь идет о коде. Думаю, это вас заинтересует.
— Я не силен в криптографии.
В шпионских головоломках математики, как правило, раз-два и обчелся. Я принюхался и уловил аромат сахара, растворяющегося в дрянном кофе.
— Знаю, но… — в голосе Джереми послышался намек на раздражение. Естественно, как определить, слушаю я или нет? (Безразличие — разновидность самоконтроля). — Возможно, что это геометрический код. Дело в том, что одна подследственная рисует чертежи.
Подследственная? Ну и ну! Несчастный шпион, который что-то там царапает в своей камере…
— Я принес один из чертежей. Знаете, я сразу вспомнил о теореме, которую вы обсуждали в своей последней статье. Может, это проекция?
— Да?
— Да. Вдобавок, чертежи, как нам кажется, имеют какое-то отношение к ее речи. Она путает порядок слов, употребляет их как попало…
— Что с ней случилось?
— Ну… Пожалуйста, вот чертеж.
— Хорошо, посмотрю, — сказал я, протягивая руку.
— В следующий раз, когда вам захочется кофе, попросите меня. В моем кабинете стоит кофеварка.
— Договорились.
АВ. Полагаю, всю свою жизнь я задумывался над тем, что такое «видеть». Моя работа, несомненно, представляла собой попытку рассмотреть вещи внутренним зрением. Я видел «через чувства». Через язык, через музыку и, прежде всего, через геометрические правила. Со временем определились наилучшие способы «видения»: по аналогии с прикосновением, со звуком, с абстракциями. Понимать — познать геометрию во всех ее подробностях, чтобы надлежащим образом воспринимать физический мир, доступ в который открывает свет; в итоге обнаруживаешь нечто вроде платоновских идеальных форм, что скрываются за видимыми явлениями. Порой звон понимания заполнял все мое естество, и мне казалось, что я должен видеть, именно должен. Я верю, что вижу.
Но когда приходится переходить улицу иди искать ключи, которые лежат не на месте, от геометрии толку мало, и ты вновь вынужден пользоваться вместо глаз ушами и руками, после чего в очередной раз сознаешь, что видеть, увы, не видишь.
ВС. Попробую объяснить иначе. Проективная геометрия появилась в эпоху Ренессанса, к ней прибегали художники, заново заинтересовавшиеся перспективой, чтобы справиться с трудностями изображения на холсте трехмерного пространства. Так геометрия быстро стала изящной и могучей математической дисциплиной. Выразить ее суть не составит труда.
Геометрическая фигура на рисунке проецируется из одной плоскости в другую (мне говорили, что свет точно так же проецирует на стену картинку слайда). Заметьте, что, хотя некоторые параметры треугольника АВС — длина сторон, величина углов
— в треугольнике А'В'С" меняются, прочие остаются неизменными: точки по-прежнему точки, линии — линии; кроме того, сохраняются и отдельные пропорции.