Реактивные самолеты Люфтваффе - страница 27

Шрифт
Интервал

стр.

Однако в 1942 году стало ясно, что в условиях военного времени реализация этого грандиозного проекта невозможна и работы по нему были приостановлены в пользу баллистических ракет д-ра фон Брауна.


Тактико-технические характеристики бомбардировщика Зенгера (расчетные)
Год принятия на вооружениенаходился в стадии разработки
Экипаж2-3 человека
Максимальная взлетная масса100 000 кг
Размеры: длина28,00 м
размах крыла15,00 м
Силовая установка:1 ЖРД х 100 000 кг
количество двигателей х тяга
Максимальная скорость полета21800 км/час
Практический потолок250 км
Дальность полета23500 км
Вооружениенет
Бомбовая нагрузка300 кг

Истребитель-перехватчик “Triebflugel Flugzeug”

Одним из любопытных проектов реактивных самолетов, разрабатывавшихся в Германии в период войны, можно считать так называемый “Triebflugel Flugzeug”, который имеет три крыла, расположенные, как оперение авиационной бомбы, и несущие на концах прямоточные воздушно-реактивные двигатели. Для старта предполагалось использовать ракеты, установленные на хвостовом оперении. В передней части сигарообразного фюзеляжа расположены вооружение и одноместная пилотская кабина. Самолет совершает взлет вертикально, без всякого разбега. Для посадки требуется минимальная площадь, так как при этом самолет задирается носом вверх, уменьшается тяга, и самолет в вертикальном положении опускается на землю хвостом вперед. Нет сведений, в каком состоянии разработки находился данный проект.


Рисунок истребителя-перехватчика "Triebflugel Flugzeug”

Приложение Немецкие реактивные двигатели

Турбореактивный двигатель Юнкерс Jumo-004b

Двигатель Jumo-004B был выпущен фирмой Юнкерс в 1941 году. В конце войны двигатель устанавливался на немецких реактивных самолетах Мессершмитт Ме- 262, Арадо Ar-234 и др.

Основными частями двигателя являются: осевой восьмиступенчатый компрессор, шесть прямоточных камер сгорания, осевая одноступенчатая прямоточная турбина и реактивное сопло с регулирующей иглой.

При работе двигателя воздух засасывается через входной патрубок (коллектор) в компрессор. Из компрессора сжатый воздух направляется в камеры сгорания, куда через форсунки впрыскивается топливо. Впрыск топлива производится навстречу потоку воздуха. Воздух, поступающий в камеру сгорания, делится на две части. Одна часть, составляющая примерно 1/3 всего количества воздуха, поступившего в камеру, проходит через завихритель во внутреннюю часть камеры — жаровую трубу и, перемешиваясь с топливом, образует рабочую смесь, воспламеняющуюся от пламени факела (при этом коэффициент избытка воздуха а=1,4–1,5). Воспламенение топлива при пуске осуществляется с помощью запальных свечей, установленных в трех камерах сгорания.

Другая часть воздуха, не входящая в жаровую трубу, обтекает ее стенки, охлаждая их, а затем добавляется к продуктам сгорания, смешивается с ними и образует газовоздушную смесь с температурой, безопасной для работы турбины (примерно 800 “С; коэфициент избытка воздуха этой смеси равен 4–4,5).

Газовоздушная смесь, пройдя кольцевой газосборник (ресиверсмеситель), поступает на лопатки соплового аппарата, а затем на лопатки турбинного диска, после чего через реактивное сопло выбрасывается с большой скоростью в атмосферу.

Регулирование двигателя осуществляется двумя автоматическими регуляторами — регулятором оборотов и регулятором иглы сопла.

Регулятор оборотов представляет собой всережимный центробежный регулятор с переменной настройкой, которая осуществляется летчиком при перемещении рычага дросселя. Регулятор поддерживает заданное летчиком число оборотов двигателя, изменяя подачу топлива в форсунки. Так как при изменении оборотов двигателя изменяется и тяга, то регулирование числа оборотов является одновременно и регулированием тяги. Регулятор иглы сопла изменяет положение игаы и, следовательно, величину проходного сечения реактивного сопла в зависимости от числа оборотов двигателя, скорости и высоты полета.

Изменение площади проходного сечения сопла непосредственно сказывается на температуре газа перед турбиной, и, таким образом, регулятор игаы сопла поддерживает эту температуру примерно постоянной, что чрезвычайно важно для надежной и экономичной работы двигателя.


стр.

Похожие книги