По мере все более глубокого проникновения в тайны строения материи физика неоднократно сталкивалась с явлениями, которые вначале казались исключительными, парадоксальными. Например, теория относительности А. Эйнштейна показала, что с увеличением скорости масса тел не остается неизменной, а растет, что не существует единого времени - его течение происходит по-разному в различных материальных системах, движущихся относительно друг друга.
С не менее удивительными фактами столкнулась и атомная физика. В частности, выяснилось, что в области так называемых моле-кулярно-атомных процессов, характеризующейся пространственно-временными интервалами 10-6 10-11 см и 10-17 - 10-22 секунды, невозможно одновременно точно определить скорость движения микрочастицы и ее положение в пространстве (так называемый принцип неопределенности). Таким образом, оказалось, что движение микрочастиц (например, электронов в атомах) существенным образом отличается от движения обычных макроскопических тел, которые всегда в тот или иной определенный момент занимают вполне определенное положение в пространстве и обладают вполне определенной скоростью.
Тем самым уже на одном из начальных этапов проникновения в микромир обнаружилось, что привычные понятия классической механики не только не могут быть автоматически перенесены на микроявления, но и совершенно недостаточны для их описания.
Проникновение в тайны строения атомов потребовало экспериментов с энергиями от нескольких электрон-вольт до сотен тысяч электрон-вольт. Когда же были достигнуты еще более высокие энергии - до сотен миллионов и, наконец, миллиардов электрон-вольт, - то оказалось, что при таких энергиях поведение микрочастиц отличается уже не только от поведения макроскопических тел, но и от поведения элементарных частиц в обычных условиях, например электронов в атомах.
Было обнаружено, что при достижении определенного, достаточно высокого уровня энергии начинаются сложные взаимопревращения частиц. Частицы одних типов превращаются в частицы других типов.
В течение последних десятилетий эта область науки бурно прогрессировала. Еще какие-нибудь 20 лет назад физикам было известно всего около десятка элементарных частиц и казалось, что именно из этих частиц и состоят все объекты окружающего нас мира. Но затем благодаря введению в строй гигантских ускорителей и применению электронно-вычислительной техники было открыто множество новых частиц, и сейчас их число измеряется сотнями.
На первых порах мир элементарных частиц казался разрозненным - в нем трудно было усмотреть общие закономерности, связывающие различные частицы между собой. Однако в результате усилий сначала экспериментаторов, а затем и теоретиков удалось обнаружить некоторые закономерности, позволяющие систематизировать элементарные частицы и построить их классификацию, подобную периодической системе Менделеева. И подобно тому как система Менделеева позволила предсказать существование неизвестных химических элементов, система элементарных частиц, построенная физиками, дала возможность предсказывать новые неизвестные явления, открывать новые частицы с весьма необычными свойствами.
Теория элементарных частиц наряду с астрофизикой всегда играла чрезвычайно важную роль в формировании новых представлений о явлениях окружающего нас мира. В частности, современная теория элементарных частиц не только знакомит нас со все новыми и новыми объектами, но и подводит к новым представлениям о том, что такое элементарность. Еще сравнительно недавно считалось само собой разумеющимся, что Вселенная представляет собой последовательность вложенных друг в друга физических систем - от Метагалактики до неделимых элементарных частиц, не имеющих внутренней структуры. Подобная картина хорошо согласовывалась и с нашим повседневным здравым смыслом, согласно которому целое всегда больше и сложнее любой из составляющих его частей.
Но теперь мы знаем, что элементарная частица может содержать в качестве своих составных частей несколько точно таких же частиц, как и она сама. Так, протон на очень короткое время распадается на протон и пи-мезон, а каждый пи-мезон - на три пи-мезона. Таким образом, в микромире теряют смысл привычные представления о целом и части, а следовательно, теряет смысл и привычное для нас представление об элементарности.