Однако попробуем все же подойти еще ближе к "началу". Согласно "горячей" модели Вселенной Фридмана, через 100 секунд после "взрыва" плотность вещества должна составлять около 100 г/см3, а температура - 109 градусов. Подсчеты говорят, что на этой стадии вещество состояло в основном из протонов, нейтронов и электронов. При этом протоны активно взаимодействовали с нейтронами, образуя главным образом альфа-частицы. Те же немногие нейтроны, которые не успели вступить во взаимодействие, распадались. Таким образом, сразу же после "взрыва" Вселенная состояла на 90 процентов из протонов и на 7 - 8 процентов - из ядер гелия. Отсюда понятно, что, определив процент гелия в сегодняшней Вселенной, можно было бы существенно подкрепить "горячую" фридмановскую модель. И действительно, у исследователей теперь есть немало оснований утверждать, что гелия во Вселенной много - около 5 - 10 процентов.
Но и на этом современная теоретическая наука не останавливается. Она стремится проникнуть в еще более ранние стадии существования мира. В тот момент, когда время (Т) было равно всего 0,3 секунды, плотность вещества должна была достигать 107 г/см3, а температура - 3-1010 градусов. Этот период характеризуется "отрывом" нейтрино от нуклонов. В принципе здесь имело место то же явление, о котором уже шла речь, когда мы говорили о реликтовом излучении. Как и электромагнитное излучение, нейтрино не успевали излучиться и поглощались веществом. Но с уменьшением плотности вещество стало для нейтрино прозрачным. Разница здесь лишь в критических значениях плотности: 10-20 г/см3 - для электромагнитных квантов и 10-7 для нейтрино.
Считается, что излученные в тот период нейтрино должны были "дожить" до наших дней. Но теперь они уже настолько охладились (температура их с 3*1010 упала до 2°К), что ученым вряд ли удастся их "поймать" в ближайшее время. Для этого точность существующей у нас аппаратуры нужно увеличить на несколько порядков. Но в принципе поймать реликтовый нейтринный фон можно. И это приблизило бы нас почти к самому моменту "начала". Впрочем, температуру в 2°К дает уже знакомая нам модель с изотропным расширением. Если же ранние стадии были анизотропны, то реликтовые нейтрино должны обладать температурой более высокой, и "уловить" их, конечно, будет легче. Возможно, это и произойдет в ближайшие годы...
Но продолжим наше путешествие во времени, наш "прорыв" к Т-0 [Здесь следует уточнить, что Т=0 - это своего рода математическая условность. Дело в том, что общая теория относительности предполагает замедление течения времени вблизи сверхплотных масс, причем оно даже может вообще остановиться в условиях чудовищной плотности вещества. Таким образом, мы можем рассматривать Т=0 как своего рода начало отсчета привычного нам времени-пространства. Ведь теория относительности всегда рассматривает время в неразрывной связи с пространством.], ко все более высоким плотностям и температурам. Здесь нас ожидают некоторые сюрпризы.
При Т=10-4 секунды плотность вещества уже "ядерная" - 1014 г/см3. Это означает, что Вселенная в тот момент еще находилась под властью квантовых законов. С достаточной строгостью мы можем считать такую раннюю Вселенную... громадным атомным ядром со всеми вытекающими из этого последствиями. Поистине удивительное торжество диалектики с ее законами перехода количества в качество! Поскольку общая теория относительности не учитывает квантовость, то вряд ли с ее помощью можно описать эту раннюю стадию.
А при еще более высоких плотностях квантовые законы играли, видимо, большую роль. Мы даже представить себе не можем, сколь необычны были проявления многоликой пространственно-временной сущности в тех условиях! Может быть, все наши современные физические понятия просто не имели тогда никакого смысла. Так что нельзя даже говорить о чудовищной "гравитационной" плотности, которую, возможно, имела Вселенная в самый момент Т-0. Теория пока дает нам умопомрачительную цифру: 4*1093 г/см3 - и ничего к ней не добавляет. Помочь тут не могут ни наши сегодняшние знания, ни здравый смысл...