Когда любое животное, такое как пресноводная креветка, которая является типичной добычей утконоса, использует свои мышцы, неизбежно генерируются слабые электрические поля. Они могут быть обнаружены достаточно чувствительным аппаратом, особенно в воде. Учитывая специализированную вычислительную способность обрабатывать данные от большого количества таких чувствительных элементов, может быть вычислен источник электрических полей. Утконос, конечно, не вычисляет так, как это делает математик или компьютер. Но на каком-то уровне в их мозгу происходит аналог вычисления, и в результате они ловят свою добычу.
У утконоса приблизительно 40 000 чувствительных электрических элементов, распределенных в продольных бороздах на обеих сторонах клюва. Как показывает «утконосункул», большие участки мозга отданы под обработку данных от этих 40 000 датчиков. Но диаграмма усложняется. В дополнение к 40 000 электрическим датчикам существует приблизительно 60 000 механических датчиков, названных толкателями, рассеянных по поверхности клюва. Петтигрю и его сотрудники нашли нервные клетки в мозге, которые получают входные сигналы от механических датчиков. И они нашли другие мозговые клетки, которые отвечают как за электрические, так и за механические датчики (пока они не нашли мозговых клеток, которые отвечают только за электрические датчики). Оба вида клеток занимают свою точную позицию на пространственной карте клюва, и они являются многослойными, что напоминает человеческий зрительный отдел мозга, где многослойность помогает бинокулярному зрению. Так же, как наш слоистый мозг объединяет информацию от двух глаз, чтобы создать стереоскопическое восприятие, группа Петтигрю полагает, что утконос мог бы объединять информацию от электрических и механических датчиков некоторым столь же полезным способом. Как это могло быть сделано?
Они предлагают аналогию грома и молнии. Вспышка молнии и раскат грома случаются одновременно. Мы видим молнию сразу, но грому необходимо больше времени, чтобы достигнуть нас, перемещаясь с относительно невысокой скоростью звука (и, между прочим, удар становится грохотом из-за эха). Рассчитав задержку между молнией и громом, мы можем вычислить, насколько далеко гроза. Возможно, электрический разряд от мышц добычи – молния утконоса, в то время как гром – волновое возмущение воды, вызванное движениями добываемых животных. Мозг утконоса настроен так, чтобы вычислять временную задержку между этими двумя явлениями, и, следовательно, вычислять, насколько далеко добыча? Это кажется вероятным.
Что касается точного определения направления на добычу, оно должно быть реализовано благодаря сравнению входных сигналов от различных рецепторов на всем протяжении карты, чему, по-видимому, способствует движение клюва из стороны в сторону, так же, как созданный человеком радар использует вращение тарелки. С таким огромным количеством датчиков, составляющих карту благодаря множеству клеток мозга, утконос, весьма вероятно, формирует детальное трехмерное изображение любых электрических возмущений в своей близи.
Петтигрю и его коллеги подготовили эту карту изолиний равной электрической чувствительности вокруг клюва утконоса. Когда Вы представляете себе утконоса, забудьте об утке, представьте «Нимрод», представьте AWACS; представьте огромную руку, нащупывающую путь отдаленными булавками и иглами; представьте сверкание молнии и раскаты грома в мутных водах Австралии.
Утконос – не единственное животное, использующее подобный вид электрического восприятия. Его применяют различные рыбы, включая веслоноса, такого как Polyodon spathula. Формально «костистые» рыбы, веслоносы вместе со своими родственниками, осетрами, вторично развили хрящевой скелет, как у акулы. В отличие от акул, однако, веслоносы живут в пресной воде, часто в мутных реках, где снова же глаза бесполезны. «Весло» сформировано в значительной степени как верхняя челюсть клюва утконоса, хотя это не челюсть вообще, а продолжение черепа. Оно может быть чрезвычайно длинным, часто достигая одной трети длины тела. Оно напоминает мне самолет «Нимрод» даже больше, чем утконос.