Проектирование СЭС-5, так же как и проектирование ряда зарубежных экспериментальных гелиостанций, велось параллельно с разработкой обоснований будущих промышленных СЭС. Для СЭС-5 такой перспективой является проект СЭС-200 (позднее СЭС-320), рассчитанный на условия Крыма. СЭС-5 разрабатывалась как модель (в масштабе мощности 1:10) одного из четырех модулей 50 МВт станции СЭС-200.
При подготовке этих проектов в 1977–1981 годах проводилось математическое моделирование работы зеркальных систем станции, рассматривались различные формы зеркального поля и структуры расположения гелиостатов. Гелиостат — это зеркало площадью в несколько квадратных метров, закрепленное на опоре и подключенное к общей системе позиционирования. То есть в зависимости от положения солнца зеркало будет менять свою ориентацию в пространстве. Площадь гелиостатов крымской СЭС составляла ни много ни мало 25,5 м>2.
Оптимальной, как и в исследованиях зарубежных авторов, признана радиально-круговая шахматная компоновка с переменным радиальным шагом между концентрическими рядами. Отличие оптической системы СЭС-5 от зарубежной «Solar-1» состояло в том, что глобальная форма поля представляла собой правильное круговое кольцо, а не эллипс. Подобные детали на уровне экспериментальной СЭС являлись одним из главных вопросов оптимизации оптических систем крупных промышленных СЭС.
Расчет зеркального поля СЭС-5 был проведен Энергетическим институтом имени Г. М. Кржижановского и НПО «Солнце» АН ТССР. Конструкция гелиостатов СЭС-5, состоящих из 45 зеркальных фацет, разработана Проектно-конструкторским бюро Главэнергостроймеханизации и изготовлена Чеховским опытным заводом «Гидростальконструкция» Минэнерго СССР при участии заводов Минстанкопрома и Минхиммаша. Отражательная способность зеркал, изготовленных Минстройматериалов СССР, составляет 0,71.
Первое пробное включение генератора станции СЭС-5 состоялось в сентябре 1985 года. В тот момент функционировало 420 гелиостатов.
В центре большого поля диаметром 500 м была расположена башня высотой 89 м. В ее верхней части находился паровой котел в виде цилиндра высотой 7 м и диаметром 7 м. Номинальная температура воды в котле достигала 250 °C.
Основная и самая трудоемкая задача — это позиционирование всех зеркал станции так, чтобы в любой момент все отраженные от них лучи были нацелены на котел. Каждый гелиостат (а когда станция полностью вступила в строй, их было 1600), оснащался электрическими приводами зенитного и азимутального вращения. ЭВМ, управляющая работой станции, при помощи электроприводов корректировала положение гелиостатов таким образом, чтобы котел всегда был освещен.
После того как зеркала нагревали воду в котле, пар подавался на турбину, которая вращала ротор генератора. Так солнечная энергия превращалась в электрическую. Турбина и генератор находились на земле, в специальном помещении.
Одновременно часть высокотемпературной пароводяной смеси аккумулировалась в двух специальных емкостях тепловых аккумуляторов объемом по 1000 м>3 каждый. В случае плохой погоды, когда солнце скрыто за облаками, или же ночью он способен был обеспечить работу станции на стандартной мощности в течение 3–4 часов плюс еще около 10 часов в режиме пониженной мощности (примерно 50 %).
При эксплуатации этой станции всплыло на поверхность множество трудностей. Одна из них — система наведения отражателей практически полностью (95 %) потребляла энергию, вырабатываемую станцией. Также возникали трудности с мытьем зеркал. В журнале «Смена» в 1989 году писали:
В качестве альтернативы «мирному атому» обычно называют солнечные, ветровые станции. Но если реально оценивать положение дел, перспективы тут туманные. По соседству с атомной работает экспериментальная солнечная. Ее проектная мощность — всего 5 МВт (для сравнения: один реактор — 1000 МВт). Но сейчас она больше энергии потребляет, чем производит. А себестоимость киловатт-часа… 34 рубля! Согласны платить? Какого-то прорыва в технологии ожидать трудно, это видно из сопоставления двух цифр. Если в прошлом году на строительство АЭС было выделено 60 млн рублей, то на работы по развитию всех нетрадиционных источников энергии в Крыму — всего 200 тысяч… Недавно появилась новая альтернатива: использовать для получения энергии сероводород, поднимающийся из глубин Черного моря и грозящий серьезными неприятностями. Но при таком нищенском финансировании надеяться на энергию солнца, ветра, биогаза и т. д. несерьезно.