Психология развития: методы исследования - страница 28

Шрифт
Интервал

стр.

.

Последний аргумент в пользу лонгитюдного подхода носит негативный характер. Главной альтернативой лонгитюдного метода является метод поперечных срезов, который также имеет ряд недостатков. Проблемы, которые могут возникнуть в исследованиях методом поперечных срезов, являются темой следующего раздела.

Метод поперечных срезов

Метод поперечных срезов предполагает тестирование разных людей разного возраста. По этой причине этим методом нельзя измерить непосредственно возрастные изменения, невозможно с его помощью и ответить на вопрос об индивидуальной стабильности во времени. Как мы видели, эти ограничения являются одним из оснований для использования лонгитюдного плана.

Но есть и другие недостатки. В связи с изучением разных выборок и разных возрастных групп возникает вероятность систематической ошибки при отборе. Возможно, сравниваемые группы различаются не только по изучаемой независимой переменной (в данном случае по возрасту), но и по другим параметрам, и именно эти последние различия обусловливают различия в значении зависимой переменной. Мы уже касались этого вопроса в главе 2, рассматривая особенности возраста как независимой переменной. Как отмечалось, цель состоит не в исключении всех межгрупповых различий, за исключением возрастных, а только тех, которые не имеют естественной связи с возрастом. Отмечалось также, что в большинстве случаев ответ на вопрос, какие параметры следует уравнивать, довольно очевиден — например, пол, расу, социальный класс, IQ. Однако теперь следует добавить, что на практике добиться желаемого соответствия не всегда просто. Обычно исследователи в области психологии развития отбирают испытуемых разных возрастов, используя разнообразные источники; новорожденных — из роддомов; младенцев — из семей, откликнувшихся на просьбу принять участие в исследовании; дошкольников — из детских садов; детей 5-11 лет — из начальной школы; подростков — из школ и колледжей. Эти различия в обстановке могут создавать различия и между популяциями. Поэтому, хотя исследователь может осознавать значение приведения в соответствие ряда параметров, сформировать действительно равноценные группы может оказаться довольно трудно.

Систематическая ошибка может также принимать форму избирательного отсева. Изначальная эквивалентность групп может растаять на глазах, если часть испытуемых откажется от продолжения обследования до его завершения. Проблема не только в том, что в одной возрастной группе оказывается больше выпадений, чем в другой. Суть проблемы та же, что и в лонгитюдном исследовании: те, кто выбывает, нередко отличаются от тех, кто остается. Поэтому валидности угрожает именно «избирательность» избирательных выпадений.

Нетрудно представить себе ситуацию, когда избирательное выпадение может исказить результаты сравнения возрастных групп. Предположим, что мы изучаем дошкольников и делим нашу выборку на младших (2,5-4 года) и старших (4-5,5 лет) детей, получая при этом две группы для сравнения. Процедура тестирования довольно утомительна, она требует от ребенка осмысления ряда инструкций и ответов на вопросы в течение весьма длительного периода времени. Не все дошкольники к этому готовы, и некоторые поэтому выбывают из исследования. Наибольшие шансы па выбывание у детей младшей группы. Наибольшие шансы на выбывание также у тех, кто обладает наименьшей компетентностью среди всех испытуемых из выборки. В таком случае мы останемся с двумя неравноценными группами: достаточно репрезентативной выборкой старших детей и явно нерепрезентативной по параметру уровня способностей выборкой младших детей. Очевидно, что любое такое выпадение снизило бы вероятность выявления улучшения результатов с возрастом.

Вернемся к вопросу о первичном отборе испытуемых. Я уже дважды говорил о том, что, как правило, выбор параметров для приведения в соответствие не представляет труда. Пора теперь обратиться к исключениям из этого «правила». Сомнения в том, по каким показателям следует уравнивать, чаще всего возникают в случаях, когда между группами очень большая разница в возрасте, и поэтому потенциально существует множество других различий. Поэтому эти сомнения наиболее сильны в ситуациях сравнения выборки пожилых с выборкой молодых людей. Наглядный пример — переменная образовательного уровня: сегодня процент лиц, окончивших среднюю школу, значительно выше, чем несколько десятилетий назад. Допустим, нам нужно сравнить 25-летних и 75-летних испытуемых. Если в обе возрастные группы мы отбираем по принципу случайности, молодые испытуемые в среднем окажутся образованнее пожилых. Тогда мы получим смешение возраста и уровня образования. Если мы включим в выборку пожилых людей только тех, у кого выше образовательный уровень, то получим равноценные выборки по параметру уровня образования, но за счет нерепрезентативности и искажения выборки пожилых людей в положительную сторону. Ни то, ни другое нежелательно; вероятно, если возможно, лучшим вариантом в этом случае будет совмещение двух подходов (см. Green, 1969). Однако главное это то, что при любой попытке сравнить взрослых испытуемых разных возрастов на определенном историческом этапе неизбежно происходит смешение возраста и уровня образования.


стр.

Похожие книги