Психология финансов - страница 21

Шрифт
Интервал

стр.

Компьютерная цепь вычислений могла воспроизводить 24 часа в минуту, после чего экран компьютера Лоренца становился сценой для драмы будущих событий: высокое давление, сменяющееся низким давлением, ураганы, вслед за которыми дул нежный ветерок, темные и штормовые ночи, после которых наступают ленивые летние дни.

Модель Лоренца была больше, чем просто будоражащей. У нее был огромный потенциал. Что если однажды станет возможным предсказывать погоду на несколько месяцев вперед?

Однако в тот зимний день 1961 года Лоренц сделал очень необычное и странное открытие. Он решил проверить предыдущее воспроизведение, на этот раз с более длинной последовательностью. Но вместо того, чтобы произвести все вычисления с начала, он попытался сократить процесс. Он ввел значения, полученные в прошлый раз, но начиная с середины цепочки. Затем он включил машину и вышел в коридор сделать себе чашечку кофе. В тот момент он совершенно не подозревал, что тем временем компьютерные итерации вели себя действительно очень странно.


Эффект Бабочки

Когда Лоренц вернулся, он очень удивился. Вычисления компьютера, которые должны были быть идентичны с предыдущей последовательностью, вообще выглядели неправильно. Они отклонялись все больше и больше и на два месяца вперед потеряли всякое сходство с первым воспроизведением.

Сначала он приписал это ошибке компьютера, но вскоре он понял настоящую причину. Его отправные точки цепи вычислений имели трехдесятичную точность. Однако компьютерные расчеты велись с шестью десятичными знаками, что доказывало их существенную значимость. Его собственная интуиция подсказывала, что было бы разумным не придавать значения последним трем десятичным во вводимых данных, так как едва ли их могли зарегистрировать метеорологические измерительные инструменты: насколько важна была 1/1000 или еще меньше? Но в метеорологической компьютерной модели Лоренца эти десятичные дроби доказали свою огромную значимость.

Открытие Лоренца не стало чем-то особенным для метеорологических прогнозов. Оно указало, в основном, на математический феномен, который ученые прежде никогда не замечали. Его сразу назвали «эффектом бабочки», так как реалистические имитации показали, что сложные вычисления системы сильно зависят от начальных значений, причем настолько сильно, что взмах крыла бабочки в Бразилии мог бы стать причиной возникновения торнадо в Техасе (Лоренц, 1979 год). Или, говоря финансовым языком: маленькая старушка, продающая несколько облигаций в Брюсселе, могла бы стать причиной краха в Японии! И выяснилось, что эта зависимость касалась не только сложных моделей: эффект бабочки можно было также обнаружить и в простых нелинейных моделях, демонстрирующих неустойчивость (рис. 4).


Рисунок 4 Эффект бабочки. График показывает математическое моделирование 11 объектов, скользящих вниз с неравномерными наклонами пиков и впадин, расположенных в синусоидальной модели. Длина наклона 100 метров. При моделировании объекты стартуют с одинаковым распределением точек, отдаленных друг от друга по горизонтали на 5 мм. Приблизительно через 30 метров их распределение уже в 20 метрах друг от друга. Интересный момент: график напоминает сигаретный дым, если его перевернуть наоборот. (Источник: Эдвард Н. Лоренц, Центр Метеорологии и Физической Океанографии, Кембридж, Массачусетс.)


Детерминированный Хаос

Последствия этого открытия были революционными. Представьте себе, что поверхность Земли покрыта сетью метеостанций с трехдесятичной точностью, находящихся только в 30 см друг от друга, посылающих свои измерения в центральный компьютер каждую минуту. И предположите, что этот компьютер достаточно большой, чтобы вместить в себя совершенно правильную модель глобальных погодных моделей. Если бы даже и было так, то надежный прогноз погоды на месяц вперед сделать просто невозможно. Как раз вопреки своим первоначальным намерениям и ко всеобщему удивлению, Лоренц смог доказать, что невозможно и никогда не будет возможно давать долгосрочные прогнозы погоды.

Эффект бабочки — один из элементов системы математических феноменов, с тех пор обобщенно названных термином «детерминированный хаос». Этот феномен охарактеризован Чера Л. Сайерсом следующим образом (1989): «Процесс характеризуется детерминированным хаосом, если он генерирован полностью детерминированной системой


стр.

Похожие книги