Пространство. Время. Движение - страница 37

Шрифт
Интервал

стр.

L=mv>тавгr=mwr·г=mwг>2.


Если масса расположена близко к центру, то он сравнительно мал, но если мы передвигаем ее в новое положение и если мы увеличиваем r, то масса mприобретает больший момент количества движения, т. е. во время движения по радиусу на нее должен действовать некоторый момент силы. (Чтобы на кару­сели двигаться по радиусу, нужно наклониться и толкаться вбок. Попробуйте как-нибудь сами проделать это.) Поскольку момент силы равен скорости изменения L во время движения массы mпо радиусу, то

где через f>k обозначена сила Кориолиса. В действительности мы хотели узнать, какую боковую силу должен прилагать Мик, чтобы двигать массу mсо скоростью v>r=dr/dt. Как видите, она равна F>K=т/r=2mwv>r.

Теперь, имея формулу для кориолисовой силы, давайте рас­смотрим несколько более подробно всю картину в целом. Как можно понять причину возникновения этой силы из элементар­ных соображений? Заметьте, что кориолисова сила не зависит от расстояния до оси и поэтому действует даже на оси! Оказывает­ся, что легче всего понять именно силу, действующую на оси вращения. Для этого нужно просто посмотреть на все происхо­дящее из инерциальной системы Джо, который стоит на земле. На фиг. 19.4 показаны три последовательных положения массы m, которая при t=0 проходит через ось.

Фиг. 19.4. Три последовательных положения движущейся по радиусу точки вращающегося столика.

Из-за вращения карусели масса, как мы видим, движется не по прямой линии, а по некоторому кривому пути, касающемуся диаметра в точке r=0. Но для того чтобы она двигалась по кривому пути, долж­на действовать ускоряющая сила. Это и есть кориолисова сила.

Однако с кориолисовой силой мы встречаемся не только в подобных ситуациях. Можно показать, что если предмет дви­жется с постоянной скоростью по краю диска, то на него тоже действует кориолисова сила. Почему? Мик видит предмет дви­жущимся со скоростью v, а Джо видит его движущимся по окружности со скоростью v=v+wr, поскольку предмет вдо­бавок переносится каруселью. Как мы уже знаем, действующая в этом случае сила будет, в сущности, полностью центробежной силой скорости v, равной тv>2>Д/r. Но, с точки зрения Мика, она должна состоять из трех частей. Все это можно записать в сле­дующем виде:

Итак, F>rэто сила, которую измеряет Мик. Попытаемся по­нять, откуда что берется. Может ли Мик признать первый член? «Конечно,— сказал бы он,— даже если бы я не вращался, то та­кая центробежная сила должна возникнуть, если побежать по кругу со скоростью v». Итак, это просто центробежная сила, появления которой Мик ожидает и которая не имеет ничего общего с вращением карусели. Вдобавок Мик думает, что долж­на быть еще одна центробежная сила, действующая даже на неподвижные предметы на его карусели. Это дает третий член. Однако в дополнение к ним существует еще один член — второй, который опять равен 2 mwv. Раньше, при радиальной ско­рости, кориолисова сила f>k была тангенциальна. Теперь же, при тангенциальной скорости, она радиальна. В самом деле, одно выражение отличается от другого только знаком. Сила всег­да имеет одно и то же направление по отношению к скорости независимо от того, куда направлена скорость. Она действует под прямым углом к скорости и равна по величине 2mwv.


Глава 20

ВРАЩЕНИЕ В ПРОСТРАНСТВЕ



§ 1. Моменты сил в трехмерном пространстве

§ 2. Уравнения вращения в векторном виде

§ 3. Гироскоп

§ 4. Момент количества движения твердого тел


§ 1. Моменты сил в трехмерном пространстве

В этой главе мы рассмотрим одно из наи­более замечательных и забавных следствий за­конов механики поведение крутящегося колеса. Для этого нам прежде всего нужно расширить математическое описание вращения, понятие момента количества движения, момента силы и т. д. на трехмерное пространство. Од­нако мы не будем использовать эти уравнения во всей их общности и изучать все следствия, ибо это займет многие годы, а нас ждут другие разделы, к которым мы вскоре должны перейти. В вводном курсе можно остановиться только на основных законах и их приложениях к весьма ограниченному числу особенно интересных слу­чаев.


стр.

Похожие книги