или
t. Вы спросите: «А что по осям координат?» Это неважно. Закон верен для любых компонент, при
любых осях.
В векторном анализе нам встретилось одно понятие — скалярное произведение двух векторов. Что соответствует ему в пространстве-времени? При обычных вращениях неизменной остается величина x>2+y>2+z>2. В четырехмерном мире таким свойством при преобразованиях обладает величина t>2-х>2-у>2-z>2 [уравнение (17.3)]. Как можно это записать? Можно было бы, например, пользоваться значком наподобие
, но обычно пишут
Штрих при S напоминает, что первый, «временной» член положителен, а остальные три отрицательны. Эта величина одна и та же в любой системе координат, и можно назвать ее квадратом длины четырехвектора. Чему равен, например, квадрат длины четырехвектора импульса отдельной частицы?
Ответ: р>2>t-р>2>x-Р>2>у-p>2>z, или, иначе, Е>2-р>2, потому что p>tэто и есть Е. Чему равно Е>2 -р>2? Должно по условию получиться что-то, что одинаково в любой системе координат, в частности и в системе координат, которая движется вместе с частицей, так что частица в этой системе покоится. Но если частица неподвижна, значит, у нее нет импульса. Значит, у нее остается только энергия, совпадающая в этом случае с ее массой. Итак, Е>2-р>2=m>2>0, т. е. квадрат длины четырехвектора импульса равен m>2>0.
Пользуясь выражением для квадрата вектора, легко изобрести скалярное произведение двух четырехвекторов: если один из них а>m , а другой b>m, то скалярное произведение определяется так:
Это выражение не меняется при преобразовании системы координат.
Следует еще упомянуть о частицах с нулевой массой покоя, например о фотоне — частице света. Фотон похож на частицу тем, что он переносит энергию и импульс. Энергия фотона равна произведению некоторой постоянной (постоянная Планка) на частоту света: E,=hv. Такой фотон несет с собой и импульс, который (как у всякой частицы) равен постоянной h, деленной на длину волны света: p=h/l. Но у фотона связь между частотой и длиной волны вполне определенна: v—c/l. (Количество волн, проходящих за 1 сек, помноженное на их длину, даст расстояние, проходимое светом в 1 сек, т. е. с.) Мы сходу получаем, что энергия фотона равна его импульсу, умноженному на с, и, далее, полагая с = 1, что энергия равна импульсу. Но это и значит, что масса покоя равна нулю. Давайте вдумаемся в это любопытное обстоятельство. Если фотон — частица с нулевой массой покоя, то что с ним бывает, когда он останавливается? Но он никогда не останавливается! Он всегда движется со скоростью с. Обычная формула для энергии — это m>0/Ц(1-v>2). Можно ли утверждать, что при m>0=0 и v=1 энергия фотона равна нулю? Нет, нельзя; на самом деле фотон может обладать (и обладает) энергией, хоть и не имеет массы покоя, за счет того, что всегда движется со скоростью света!
Мы знаем также, что импульс любой частицы равен произведению полной энергии на скорость: p=vE при с=1, или, в обычных единицах, p=vE/c>2. Для любой частицы, движущейся со скоростью света, р=Е, если с=1. Формулы для энергии фотона в движущейся системе даются по-прежнему уравнением (17.12), но вместо импульса туда нужно подставить энергию, умноженную на с (на 1). Изменение энергии при преобразовании означает изменение частоты света. Это явление называется эффектом Допплера; формулу для него легко получить из уравнения (17.12), положив Е=р и E=hv.
Как сказал Минковский: «Пространство само по себе и время само по себе погрузятся в реку забвенья, а останется жить лишь своеобразный их союз».
Глава 18
ДВУМЕРНЫЕ ВРАЩЕНИЯ
§ 1. Центр масс
§ 2. Вращение твердого тела
§ 3. Момент количества движения
§ 4. Закон сохранения момента количества движения
§ 1. Центр масс
В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не интересовала. В последующих нескольких главах мы изучим применение законов Ньютона к более сложным вещам. Но ведь чем сложнее объект, тем он интереснее, и вы сами увидите, что явления, связанные с такими более сложными объектами, поистине поразительны. Разумеется все эти явления не содержат ничего большего, чем комбинации законов Ньютона, однако временами просто трудно поверить, что все это произошло из