Строка 3. По поводу «критической прямой» (она же критическая линия) см. главу 12.iii, рисунок 12.1.
Строка 4. Это следует сравнить с утверждением из главы 13.viii, что на высоте T вдоль критической прямой средний интервал между нулями ~2π/ln (T/2π). Это означает, что на единицу длины вдоль прямой приходится ~(1/2π)/ln (T/2π) нулей. Это автор песни и имеет в виду под «плотностью». Заметим, что, согласно правилам обращения с логарифмами, ln (T/2π) равен ln T − ln (2π), т.е. ln Т − 1,83787706…. Умножив это на 1/2π, получим (1/2π)ln T − 0,29250721…. По мере роста T растет (хотя и намного медленнее) и ln T, так что слагаемое величины 0,29250721… становится совершенно несущественным. Следовательно, плотность равна «один-на-два-пи эль-эн T».
Строка 8. В оригинале обозначение mod t использовано для модуля числа t, определенного в главе 11.v. Когда, как в данном случае, под t понимается вещественное число, mod t — в нормальных обозначениях |t| — выражает просто величину t без учета знака.[219] Как отмечалось в главе 16.iv, t (или T) — довольно стандартное обозначение в теории дзета-функции, когда говорят о больших высотах вдоль критической прямой (или, более общим образом, как видно из обсуждения ГЛ в примечаниях к строчкам 21-28, о мнимой части аргумента дзета-функции).
Строка 9. Харальд Бор (глава 14.iii) и Эдмунд Ландау доказали в 1913 году важную теорему о функции S (см. главу 22.iv), которая гласит, что если дзета-функция имеет лишь конечное число нулей вне критической прямой, то функция S(t) неограничена, когда t стремится к бесконечности. Упоминавшееся в главе 22.iv доказательство Сельберга 1946 года, что S(t) неограничена, — более сильный результат, поскольку не требует указанного условия. По поводу Крамера см. главу 20.vii. Помимо разработки упомянутой там «вероятностной модели» для распределения простых чисел Крамер также доказал и один менее значительный результат о функции S: если ГЛ (см. примечания к строчкам 21-28) верна, то S(t)/ln t стремится к нулю, когда t стремится к бесконечности. По поводу Литлвуда и Харди см. главу 14; по поводу Титчмарша — главу 16.v.
Строки 13-16. Глава 14.v.
Строка 17. Чтобы попасть в размер, термин Li здесь надо произносить как как ell-eye (в оригинале, и как «ли» в переводе. — Примеч. перев.). Далее автор песни обсуждает остаточный член π(x) − Li(x), который мы подробно рассматривали в главе 21.
Строка 18. «Как там с порядком P — неизвестно» означает, что «P есть Ο большое от… от чего? — неизвестно». По поводу Ο большого см. главу 15.ii-iii; при этом имеются в виду большие значения x.
Строки 19-20. Если бы удалось доказать, что π(x) − Li(x) = Ο(√x∙ln x) (другими словами, на разность имеется ограничение, т.е. «потолок»), то и ГР была бы доказана. В этом заключается результат, обратный результату фон Коха 1901 года, приведенному в главе 14.viii. Там это не упомянуто, но если формула фон Коха верна, то верна и ГР. Они следуют друг из друга.
Строки 21-28. Следующие несколько строк целиком посвящены гипотезе Линделёфа (ГЛ) — знаменитому предположению в теории дзета-функции. Его гипотеза касается роста дзета-функции в вертикальном направлении — т.е. вверх по вертикальной прямой в комплексной плоскости.