При всей своей прогрессивности и достоинствах сама идея интегральной электроники не несла в себе ничего принципиально нового. Это был все тот же схемотехнический путь, то есть известные схемы, которые работали на дискретных полупроводниках, воспроизводились на кристалле кремния. Конечно, не обошлось и без взаимного влияния.
Само развитие интегральной технологии открывало новые возможности, рождались новые типы транзисторов, что, безусловно, отразилось и на принципах построения схем. Но все равно это путь безудержного роста числа элементов в микросхеме по мере усложнения выполняемых ею функций.
И вот виден финиш марафона — известны те пределы, до которых может быть уменьшен транзистор. Хотя, чтобы дойти до финиша, надо преодолеть еще много преград. Но специалисты сходятся во мнении, что работать с линией тоньше, чем 0,1 микрометра, видимо, нет смысла. При таких размерах знакомые материалы ведут себя странно. Например, тончайшие полоски алюминия, которые соединяют транзисторы, извиваются как змеи, когда по ним проходят электроны. В этом тонком мире действуют уже и другие законы, и вполне вероятно, что там нас ждут неожиданные открытия.
Кроме того, не только физика накладывает ограничения, но и экономика. Возможно, что еще раньше, чем будет достигнут физический предел малости транзистора, наступит экономический предел. В последние два десятка лет стоимость чипов неуклонно снижается. При переходе на субмикронные размеры элементов микросхемы изменятся и методы изготовления чипов и тенденция снижения их стоимости может обратиться вспять. Сверхмалые и сверхсложные чипы просто невыгодно будет производить. Как говорят: «Овчинка выделки не стоит». И наука ищет выход из ожидаемого, но еще не достигнутого тупика…
А что если отказаться от привычных электрических схем? Что если для обработки информации использовать непосредственно какие-либо явления в разных средствах — твердых, жидких, плазменных, полупроводниковых, магнитных, биологических… Функцию сложной схемы их транзисторов, диодов, резисторов и других элементов пусть выполняет непосредственно какой-либо физический процесс.
Такой принципиально новый подход получил название функциональной электроники. Понятие емкое, обширное. В нем множество направлений, каждое из которых заслуживает отдельной популярной книги. Здесь и оптоэлектроника, и магнитоэлектроника, и акустоэлектроника, и криогенная электроника, и биоэлектроника…
Особенно часто сейчас в газетах пишут о биоэлектронике. Вероятно, из-за экзотики. Еще бы, биологические системы — своего рода рекордсмены. Диву даешься и отказываешься верить, когда читаешь, что слуховой орган кузнечика чувствует колебания, амплитуда которых составляет половину диаметра атома водорода! Чувствительность слуха кузнечика столь высока, что, находясь, скажем в Подмосковье, он может воспринимать самые малые землетрясения, происходящие на Камчатке. Неудивительно, что творения живой природы, своего рода биологические «патенты», — постоянный источник новых идей для инженеров, конструкторов, ученых.
Отчасти особое внимание к биоэлектронике связано с такими заманчивыми идеями, как, например, имплантация в мозг биоэлектронного устройства для восстановления зрения у слепых или создания самостоятельно собирающихся биологических вычислительных машин. Представьте себе ЭВМ, синтезированную с помощью бактерий! Вполне возможно, что лет через 15–20 такая ЭВМ перейдет из мира фантастики в мир реальный. Уже многие научные коллективы в различных странах работают в этом направлении.
Одним из кирпичиков биологических ЭВМ может стать молекула белка с «памятью», то есть обладающая способностью находиться в одном из двух состояний, как и транзистор.
С переходом от кремниевых микросхем к «молекулярной электронике» на органических материалах, по-видимому, можно будет добиться плотности записи информации до одного миллиарда миллиардов (10>18) бит в одном кубическом сантиметре материала! Для сравнения отметим, что в человеческом мозге (его объем составляет 750 кубических сантиметров) можно записать информацию, эквивалентную одной тысяче миллиардов (10