Приключения радиолуча - страница 37

Шрифт
Интервал

стр.

В своих воспоминаниях он писал: «Особенно приводили меня в изумление все большие расстояния, вплоть до которых я мог обнаружить действие. До тех пор привыкли считать, что электрические силы убывают по закону Ньютона и, следовательно, с увеличением расстояния быстро становятся незаметно малыми».

Добавка в виде тока смещения, введенная Максвеллом в уравнение Ампера, привела к тому, что в решении максвелловых уравнений, помимо членов, убывающих как обратный квадрат расстояния, то есть по известному нам со школы закону Кулона, к счастью, содержится еще один член, названный волновым. Он описывает часть поля, которая спадает гораздо медленнее, чем обратный квадрат расстояния, а именно как величина обратная расстоянию в первой степени.

Читатель может спросить: почему к счастью? Да потому, что этому подарку природы, предсказанному Максвеллом, и обязана своим рождением вся нынешняя радиотехника.

Кажется чудом, что человек, говорящий во Владивостоке, с помощью каких-то электрических воздействий может быть услышан через многие тысячи километров, например, в Бресте. И все благодаря тому, что электромагнитное поле спадает обратно пропорционально не квадрату, а лишь первой степени расстояния.

Мы уже говорили о том, как «отрываются» электромагнитные волны от рождающих их колебаний тока в вибраторе. Не сразу рвется «пуповина», поначалу связывающая волну с вибратором. На расстоянии, равном примерно длине волны, электромагнитное поле еще не разорвало своих связей с породившими его зарядами и токами. Это пока поле индукции. Сильны еще электрические силы, подчиняющиеся закону Кулона. Лишь на расстоянии нескольких длин волн силы индукции практически исчезают и начинает главенствовать поле бегущей волны — поле излучения.

Герц много экспериментировал с электромагнитными волнами. Он убедился, что они, как и свет, распространялись прямолинейно. Металлический экран не пропускал их, зато изолятор (как, например, закрытая дверь) не был помехой.

А будут ли новые волны преломляться подобно световым лучам в призме? Чтобы ответить на этот вопрос, Герц сооружает почти двухтонную призму из твердого битума. И призма действительно преломляет волны. Он даже определил коэффициент преломления, который оказался близким к 1,7.

Казалось бы, простые эксперименты, а сколько в них научных идей, породивших спустя десятилетия целые научно-технические направления. Герц придумал, как сконцентрировать электромагнитные волны. Он разместил свой вибратор в фокусе вогнутого зеркала, изготовленного из цинкового листа в виде параболического цилиндра. Вот вам и прообраз зеркальных антенн, чаши которых сегодня «рассыпаны» по нашей планете.

С помощью двух таких антенн, одна из которых была подсоединена к индукционной катушке, а в фокусе другой находился резонатор, Герц передавал и принимал электромагнитные волны на расстоянии 16 метров. Такой была первая «система» радиосвязи.

А вот другой опыт, в котором прослеживается принцип радиолокации — отражение радиоволн от препятствия. Герц установил рядом передающую и приемную антенны и направил их в одну точку. Там он поместил металлический лист. Электромагнитные волны отражались от листа и принимались приемной антенной. В разрыве приемной рамки проскакивала искра. Стоило убрать металлический лист — и искра пропадала.

Герц провел опыты с поляризацией. Он развернул одну из антенн на 90 градусов, и прием прекратился, сколь близко он ни приближал антенны. Объяснение простое. Горизонтальный вибратор излучал волны с горизонтальной поляризацией и, если приемную рамку поставить вертикально, то горизонтальный вектор напряженности электрического поля не сможет навести в ней электрические заряды.

И еще одно интересное наблюдение сделал ученый. Он заметил, что в некоторых экспериментах искровой разряд в зазоре приемника возникал лишь тогда, когда он освещался светом от искры передатчика. Теперь-то мы знаем, что свет искры содержит ультрафиолетовое излучение. Именно оно способствовало высвобождению электронов из шариков разрядника, тем самым облегчая появление искры в резонаторе. Данное явление называют фотоэлектрическим эффектом. Его часто приводят в качестве подтверждения корпускулярной природы света.


стр.

Похожие книги