Приключения радиолуча - страница 15

Шрифт
Интервал

стр.

ангстрема). Рентгеновское излучение с длиной волны больше двух ангстрем считается мягким, а с меньшей — жестким. То есть чем больше частота колебаний рентгеновских волн, тем жестче излучение, тем большей энергией оно обладает.

«Пахнут ли рентгеновские лучи?» — этот вопрос может показаться странным. Но оказывается, что способностью их унюхать обладают крысы. Они чувствуют малые дозы рентгена, совершенно безвредного для них. Каким образом? Косвенным. Их обоняние столь чувствительно, что они улавливают даже малые изменения запаха воздуха в результате его ионизации рентгеном.

Человек имеет в основном дело с рентгеновскими лучами, полученными искусственно: на Землю природный рентген, рожденный на Солнце или в глубинах Вселенной, не пропускается атмосферой — нашим спасительным зонтиком, защитницей от губительных космических излучений.

А ведь космический рентген может многое поведать о тех процессах, которые совершаются в глубинах Вселенной. Поэтому с началом космической эры из астрономии выделилась новая многообещающая область — рентгеновская астрономия. Действительно, вещими оказались слова К. Э. Циолковского: «Только с момента применения реактивных приборов начнется новая великая эра в астрономии: эра пристального изучения неба».

До появления спутников рентгеновское излучение изучалось с помощью ракет с высотой подъема более 100 километров. Ни самолет, ни стратостат такую высоту не одолеют. Но время полета ракеты — минуты. Это ее главный недостаток. Много информации за такое время не соберешь.

Второй советский искусственный спутник третьего ноября 1957 года доставил в космос приборы, регистрирующие рентгеновское излучение. Такие же эксперименты были начаты в США спустя три года.

Сразу было сделано интересное открытие — в отличие от более или менее постоянного ультрафиолетового излучения рентгеновский поток пульсировал. Спокойные периоды сменялись бурными, когда интенсивность излучения возрастала в десять раз.

Пядь за пядью «ощупывая» нашу звезду приборами, ученые определили, что рождается рентгеновское излучение над поверхностью Солнца в короне, вернее, в отдельных небольших областях короны, так называемых конденсатах. Конденсаты тесно связаны с солнечными пятнами: они одновременно с ними возникают и исчезают.

Температура в конденсатах очень высока — 3–5 миллионов градусов. Для сравнения: температура на поверхности Солнца — шесть тысяч градусов, в короне — миллион. Именно поэтому атомы в конденсатах теряют электроны и становятся источниками рентгеновского излучения. Так была найдена природа солнечного рентгена — его порождает разогрев небольших участков короны.

Исследователей особенно интересуют вспышки — гигантские взрывы в солнечной атмосфере. Для исследования вспышек в Физическом институте АН СССР имени Н. П. Лебедева была создана прецизионная аппаратура. С ее помощью ученые выяснили, что вещество вспышки нагревается до 30–50 миллионов градусов и порождает резкий всплеск жесткого рентгеновского излучения, в тысячу раз превосходящего рентгеновский поток от конденсатов.

Но где источник чудовищного взрыва, эквивалентного миллиарду водородных бомб? На Земле при современном уровне электродобычи такую энергию можно получить за 1000 лет. Ученые пришли к выводу, что вспышка черпает свою энергию из магнитного поля Солнца. При вспышке поле перестраивается таким образом, что в плазме солнечной короны возникают мощные электрические токи, подобно тому, как образуются они в динамо-машине. Эти-то токи и нагревают солнечное вещество до чудовищных температур. Но иногда при вспышке происходит как бы «разрыв» токовой цепи, и в этом месте частицы плазмы ускоряются до колоссальных энергий и вырываются в пространство. Некоторые из них — протоны, обладающие высокой проникающей способностью, могут быть опасными для космонавтов. Но не только Солнце источник космического рентгена, в настоящее время обнаружено более сотни галактических объектов — источников рентгеновского излучения.

За рентгеновским диапазоном лежат еще более жесткие, то есть несущие еще большую энергию, электромагнитные волны — гамма-лучи. Подчас гамма-излучение и рентгеновские лучи не отличишь друг от друга. Обычно те электромагнитные волны, которые порождаются ядрами, называют гамма-излучением, а те, которые атомами, — рентгеновскими лучами. Но если их частота совпадает, то физически эти волны отличить уже невозможно, каков бы ни был их источник.


стр.

Похожие книги