Приглашение в теорию чисел - страница 19
q = 3, 7, 11, 19, 23, 31…
Ни одно такое простое число не представляется в виде суммы двух квадратов; более того, вообще ни одно число вида 4n + 3 не может быть представлено в виде суммы двух квадратов. Чтобы убедиться в этом, заметим, что если целые числа а и b оба четные, то а>2 и b>2 оба делятся на 4, отсюда и а>2 + b>2 делится на 4. Если они оба нечетные, например, а = 2k + 1, b = 2l + 1, то а>2 + b>2 = 4k>2 + 4k + 1 + 4l>2 + 4l + 1 = 4 (k>2 + l>2 + k + l) + 2, поэтому а>2 + b>2 имеет при делении на 4 остаток 2. И наконец, если одно из целых чисел а и b четное, а другое — нечетное, скажем, а = 2k + 1, b = 2l, то а>2 + b>2 = 4k>2 + 4k + 1 + 4l>2 и имеет при делении на 4 остаток 1. Итак, мы перебрали все возможности и можем заключить, что сумма двух квадратов никогда не представима в виде 4n + 3.
Чтобы закончить наше исследование для простых чисел, заметим, что 2 = 1>2 + 1>2.
Для того чтобы проверить, является ли составное число z суммой двух квадратов, разложим его на простые множители
z = p>1>α>1p>2>α>2 •… • p>k>α>k. (5.3.7)
Число z оказывается суммой двух квадратов тогда и только тогда, когда каждое простое число p>i вида 4п + 3 входит в разложение в четной степени.
Примеры. Число z = 198 = 2 • З>2 • 11 не является суммой двух квадратов, так как 11 имеет вид 4n + 3 и входит в разложение в первой степени.
Число z = 194 = 2 • 97 является суммой двух квадратов, так как ни один из его простых множителей не является числом вида 4n + 3. Действительно, z = 13>2 +5>2.
Вернемся к нашей первоначальной задаче нахождения всех чисел z, которые могут быть гипотенузами простейших треугольников Пифагора. Такое число z должно быть представимо в виде z = m>2 + n>2, где числа m и n удовлетворяют условиям (5.2.8). Необходимым и достаточным условием для этого является следующее: каждый из простых множителей числа z должен иметь вид 4n + 1. Доказательство этого утверждения мы вновь опускаем.
Примеры. z = 41. Это число легко представить в виде суммы двух квадратов искомого вида, z = 5>2 + 42, так что m = 5, n = 4 и x = 40, у = 9, z = 41 выражают длины сторон соответствующего треугольника.
z = 1105 = 5 • 13 • 17. Существуют четыре представления этого числа в виде суммы двух квадратов:
1105 = ЗЗ>2 + 4>2 = 32>2 + 9>2 = 31>2 + 12>2 = 24>2 + 23>2.
Стороны соответствующих треугольников вычислите самостоятельно.
Целый ряд задач о треугольниках Пифагора может быть решен при помощи наших формул (5.2.7)
х = 2mn, у = m>2 — n>2, z = m>2 + n>2.
Например, можно искать треугольники Пифагора с заданной площадью А. Если такой треугольник является простейшим, то его площадь равна
А = 1/2 ху = mn (m — n) (m + n). (5.3.8)
Здесь три из четырех множителей нечетны. Нетрудно видеть, что они попарно взаимно простые. Поэтому, чтобы найти все возможные значения чисел m и n, можно выделить из числа А два взаимно простых нечетных множителя k и k (k > l), положив
m + n = k, m — n = l,
что дает
m = 1/2 (k + l), n = 1/2 (k — l).
После этого мы проверяем, удовлетворяют ли эти числа условиям (5.3.8).
Рассуждения несколько упрощаются, если заметить, что два множителя в выражении (5.3.8) могут равняться 1 только в единственном случае:
m = 2, n = 1, A = 6.
Действительно, два множителя в (5.3.8) могут быть равны 1, только если
n = m — n = 1,
что и дает указанное выше значение.
Пример. Найдем все треугольники Пифагора с площадью А = 360. Разложение числа А на простые множители таково: A = 2>3 3>2 • 5. Число А может быть единственным образом записано в виде произведения четырех взаимно простых множителей: А = 8 • 1 • 5 • 9. Если мы ищем простейший треугольник, то m + n = 9. Однако если m = 8, то n = 1 и m — n = 7, но А не делится на 7, а вторая возможность (n = 8, m = 1) исключается условием > n. Поэтому такого треугольника не существует.
Этот результат не исключает возможности существования треугольников с площадью А = 360, не являющихся простейшими. Следующее соображение может быть использовано в общем случае для нахождения треугольников заданной площади, не являющихся простейшими. Если длины всех сторон треугольника имеют общий делитель d, т. е. могут быть записаны как