Понятная физика - страница 6

Шрифт
Интервал

стр.

Чтобы избежать расхождений, в физике приняли единую систему физических величин, которую назвали международная система SI (СИ). Физика – наука практическая. Чтобы найти, какую силу надо приложить, нужно знать, как единицы измерения связаны между собой. В основу системы СИ положены три природные величины: единица длины – 1 м, единица массы – 1 кг, единица времени – 1 с. Для них приняты символы: L, M, T. Все другие единицы можно выразить через L, M, T, при помощи соответствующих уравнений.

Комбинацию L, M, T, взятую в квадратные скобки, принято называть размерностью физической величины. Например, размерность скорости v = s/t выражается через символы L, M, T как: [v] = [L/T]. Размерность силы F можно выразить при помощи уравнения (4.4): [F]=[ML/T>2].

Возникает естественный вопрос: зачем это надо? Дело вот в чём. Чтобы изучать формы энергии, уравнения движения, которые определяют передачу энергии от тела к телу, записывают в виде равенства комбинаций физических величин. Если в чистой математике единицы измерения не важны, в физике и технике все по-другому. В физике знак равенства означает, что какими бы не были комбинации величин по обе стороны знака, их размерности должны совпадать. Представим, в инструкции по испытанию лифта прописано: «Лифт испытывать грузом не менее 5000 Н». Но гири весом Р = 5 кН не бывает. Значит, в кабину лифта надо затащить 10 гирь по 500 Н или пять гирь по 1000 Н или другой набор гирь, но такой, чтобы в сумме их вес был бы равен 5 кН: Р = Р>1 + Р>2 + Р>3 + …+ Р>n. = 5 кН.

Рассмотрим ещё пример. В предыдущей главе мы составляли уравнение: Fs=mv>2. Проверим размерности слева и справа от знака равенства. Слева: [Fs] = [ньютон*метр]. Справа: [mv>2]= [m]*[L>2/T>2] = [m] *[L/T>2]*[L] = [m*a]*[L] = [F]*[s] = [ньютон*метр]. Совпадение размерностей означает, что уравнение, возможно, составлено правильно. Вот если бы размерности не совпали, можно было сразу сказать, что уравнение составлено неверно.

§ 6. Закон всемирного тяготения

Мы уже говорили, что любое массивное тело является источником гравитации. Очевидно, чем больше масса тела, тем сильнее поле тяготения вокруг него. Интересно узнать, от чего ещё зависит сила притяжения? Известно, что на Луне вес тела всего в шесть раз меньше, чем на Земле, хотя масса Луны в 81 раз меньше земной. Значит, сила притяжения зависит не только от массы. Заметим, что морские приливы на Земле от притяжения Солнца намного меньше, чем от Луны, хотя Солнце неизмеримо массивнее. Разница в том, что расстояние от Земли до Солнца намного больше, чем до Луны. Очевидно, сила притяжения зависит также от расстояния до источника гравитации. Изучение высоты прилива в зависимости от расстояния до источника гравитации показывает, что сила тяготения зависит от расстояния в квадрате до центра гравитации. Докажем это.

Разделим радиус Земли на радиус Луны и возведем в квадрат: 6 380 км / 1 740 км = 3.66; 3.66*3.66 = 13.4. Мы получили отношение квадратов расстояний до центров гравитации. Отношение масс Земли и Луны известно, оно равно 81. Разделим отношение масс на отношение квадратов радиусов: 81/13.4 = 6, что в точности равно отношению веса тела на Земле к весу того же тела на Луне. Это значит, что гравитация на Луне в шесть раз меньше гравитации на Земле, что и требовалось доказать. Следовательно, поле гравитации вокруг тела пропорционально массе тела и обратно пропорционально квадрату расстояния до центра тела: g = GM/R>2 (6.1). Коэффициент G нужен, чтобы совпали размерности по обе стороны знака равенства. Из требований системы СИ следует, что размерность G равна: [G] = [L>3/MT>2]. Коэффициент G называется «постоянная гравитации». От её значения зависит время жизни звёзд, галактик, в общем, зависит всё. В нашей Вселенной величина постоянной гравитации равна: 6.67*10>-11 м>3/кг*с>2.

Чтобы узнать, с какой силой притягивает к себе тело с массой М, умножим обе части (6.1) на массу m (масса второго тела), получим: mg = GMm/R>2 (6.2). Слева получился вес второго тела Р, который равен силе притяжения: F = GMm/R>2 (6.3).

Уравнение (6.3) известно как закон всемирного тяготения. Его тоже открыл Ньютон. С помощью уравнения (6.3) можно вычислить силу притяжения между любыми телами, если известны их массы и расстояние между их центрами. Покажем на учебном примере (задаче).


стр.

Похожие книги