Как это ни удивительно, Карно — сторонник теории теплорода. По его убеждению, эта невесомая, но неуничтожимая материя может быть уподоблена воде, приводящей в движение мельничное колесо. Количество воды остается все время неизменным, работа же совершается за счет простого падения воды с высокого уровня на низкий. Чем больше напор — разность уровней, тем большую работу совершает один килограмм воды. В принципе, считал Карно, тепловые двигатели работают примерно так же. Разность температур в котле и в конденсаторе подобна разности уровней воды. Теплород эквивалентен воде, его количество неизменно, и в конденсатор попадает ровно столько теплорода, сколько выходит из котла. Приняв за аксиому неуничтожимость теплорода, Карно особенно ясно понял принципиальную важность разности температур в котле и в конденсаторе для работы тепловых машин. Подобно тому как огромные количества воды в океане бесполезны для получения работы, поскольку воде некуда стекать, так и огромные количества теплового движения, по сути дела, мертвы, если нет перепадов температур, нет стока для теплорода. Карно доказывал: мало иметь источники теплорода, надо еще иметь и резервуары, в которые он мог бы стекать.
При чтении «Размышления о движущей силе огня» видно, что Карно выступает прежде всего как инженер (кстати, он и был капитаном именно инженерных войск французской армии). Главное для него — исследование машины, то есть чисто инженерная задача. Очищение же тепловых процессов от необратимости — величайшее научное достижение — для него не более чем вспомогательный прием. Не удивительно, что успешное решение первой задачи поразило современников гораздо сильнее, чем гениальное решение второй.
После исследования Карно, еще больше укрепившись в мысли о неуничтожимости теплорода, ученые постарались не только отмахнуться от экспериментов Румфорда, но и долго отказывались всерьез обсуждать вдохновенные прорицания немецкого врача Роберта Майера и скрупулезные опыты манчестерского пивовара Джеймса Джоуля. Эти незнакомые и непохожие люди пришли к закону сохранения энергии независимо друг от друга. Оба они установили, что «движущая сила» сохраняется при изменениях любых форм движения. Однако Майер решил проблему в общем виде, взяв переход механической работы в теплоту как частный случай; а Джоуль, наоборот, — сначала экспериментально определил механический эквивалент теплоты, а потом высказал мысль, что, по-видимому, и при всех других превращениях «движущая сила» сохраняется.
Ученый мир по-разному отнесся к трудам этих непрофессионалов, не принадлежавших к ученой корпорации. Статьи Майера, появлявшиеся с 1842 года, просто никто не воспринял всерьез и не заметил: врач, берущийся учить физиков, новые взгляды вместо новых экспериментов… Нет, не стоит внимания! Сбросить же со счетов опыты Джоуля было не так-то просто.
В 1843 году британские ученые встретили сообщение Джоуля о том, что механическую работу можно превратить в теплоту, гробовым молчанием. Год спустя Королевское общество отказалось принять его статью, в которой в противовес Карно доказывалось, что пар, расширяющийся в цилиндре, теряет теплоту и что в конденсатор ее попадает меньше, чем выходит из котла. В 1845 году в Кембридже Джоуль делает доклад о том, что вода после водопада должна быть теплее, чем до него, и даже вычисляет этот прирост температуры для Ниагарского водопада — 0,11 °C. Еще через два года в Оксфорде он выступает с новым докладом, после которого собравшиеся физики обвиняют его в том, что свои слишком далеко идущие выводы он делает на основе каких-то сотых долей градуса.
Во время одного из этих выступлений и состоялась первая встреча Джоуля с молодым профессором Вильямом Томсоном — будущим лордом Кельвином. Слушая Джоуля, Томсон — знаток и поклонник Карно — испытал желание встать и доказать манчестерцу, что он не прав. «Но по мере того, как я слушал его, — вспоминал потом Томсон, — я понял: хотя в выводах Карно и есть зерно истины, от которого нельзя отказаться, Джоуль тоже прав и сделал великое открытие».