Победа разума над оружием. Манифесты будущего - страница 28

Шрифт
Интервал

стр.

Целью индуктивной логики является формулировка общих законов на основании конкретных обстоятельств. Дедуктивная логика поступает противоположным образом: она начинает с общих посылок и, таким образом, имеет дело с вопросом: «Как мы получили эти посылки?» Чистая математика отвечает: «Мы знаем о них, потому что это лишь словесные формулировки». Утверждение «дважды два четыре» похоже на утверждение «в ярде три фута». Мы не проверяли его с помощью наблюдения, потому что это не закон природы, а наше собственное решение о том, как мы будем использовать эти слова. Вот почему чистая математика способна существовать, не прибегая к наблюдениям или экспериментам.

Однако вне логики и чистой математики вопрос об общих посылках не решается столь просто. Рассмотрим еще раз знаменитый силлогизм традиционной формальной логики: «Все люди смертны; Сократ человек; значит, Сократ смертен». Откуда вы знаете, что все люди смертны? Вы знаете на основании индуктивного вывода, который, как и любой индуктивный вывод, обладает лишь высокой степенью вероятности, но не является определенно истинным. Утверждение «Все люди смертны» само по себе является заключением рассуждения, посылки которого таковы: А умер, В умер, С умер и т. д. Поскольку все живущие сейчас люди не умерли, вы должны так сформулировать свои посылки, чтобы этот факт не сыграл против вашего заключения. Допустим, что нет статистических данных о том, что кто-либо прожил до 150 лет, поэтому вы можете сформулировать посылку: «А, В, С… не живут до 150 лет». Для этого утверждения нет исключений. Вы можете продолжить свое рассуждение: «Поэтому, вероятно, все люди умирают прежде, чем им исполнится 150 лет», а затем вы можете завершить дедукцию в отношении Сократа (который, как мы предположили, все еще жив). Но это глупый окружной путь. Если ваши посылки делают общее утверждение вероятным, то утверждению о Сократе они придают значительно большую вероятность; поскольку если бы для этого общего утверждения существовало бы несколько редких исключений, непохоже, чтобы Сократ был именно таким редким исключением, делающим общее утверждение ложным. Лучше сказать так: «Согласно всем статистическим данным люди умирают в возрасте до 150 лет; поэтому, вероятно, то же самое произойдет и с этим конкретным человеком».

Однако это рассуждение имеет форму простого перечисления, и, как мы видели, подобные аргументы могут быть усилены с помощью открытия общих законов, делающих наш конкретный случай примером гораздо более широкого обобщения. Вместо того чтобы ограничивать свое рассуждение людьми, мы можем построить свое рассуждение относительно всех многоклеточных животных и растений. Мы могли бы пойти и дальше, вплоть до рассмотрения причин, по которым химические компоненты изменяют свой химический состав. Это иллюстрация того, почему так важен поиск общих законов. Они придают невероятно высокую определенность, не подменяя индукцию дедукцией, но придавая более широкое основание для исходного перечисления, от которого зависят все индуктивные рассуждения.

Наиболее важное использование дедукции состоит в выводе следствий из гипотез, подлежащих проверке с помощью наблюдений или экспериментов. Если гипотеза истинна, все ее дедуктивные следствия истинны; если она ложна, то некоторые из ее следствий все равно истинны, но некоторые – ложны. Следовательно, если все следствия, которые мы смогли проверить, истинны, весьма вероятно, что гипотеза истинна или близка к истине. Вывод следствий часто связан с довольно сложными математическими процедурами; это одна из причин важности математики в открытии общих законов. Когда сформулированные законы приняты, математика важна при выводе следствий, которые принимаются как истинные. Часто бывает существенно иметь основание для принятия следствий до проведения экспериментов. Например, при строительстве железнодорожного моста мы не можем пустить по нему поезд с целью проверки его прочности. В подобных случаях мы полагаемся на общие законы, полученные с помощью индукции из предыдущих экспериментов. Есть доля вероятности того, что индукция будет ошибочна, но она гораздо меньше, чем другие, возможные в практической жизни, риски, например обман партнера по строительству моста.


стр.

Похожие книги