В популяциях, насчитывающих миллионы особей, в каждом поколении возникает множество новых мутаций — и вредных, и полезных, и нейтральных (напомним, что категория мутации определяется ее влиянием на приспособленность, то есть на эффективность передачи особью своих генов следующим поколениям). Все эти мутации вносят вклад в среднюю приспособленность особей, от которой зависит скорость роста численности популяции. Возникновение новых мутаций и изменение частоты их встречаемости под действием отбора и генетического дрейфа — самые фундаментальные эволюционные процессы. Нельзя понять эволюцию, не изучив их во всех подробностях.
Но как уследить за тысячами мутаций, происходящих у миллионов особей? Секвенировать целиком миллионы геномов — неподъемная задача даже при современном уровне развития биотехнологий. Если же применять выборочное секвенирование, то в поле зрения исследователей попадут только те мутации, которые достигли высокой частоты встречаемости (например, как в Исследовании № 3). Картина получится весьма неполной. Ведь многие возникающие полезные мутации, вероятно, никогда не становятся массовыми, однако свой вклад в общую приспособленность тем не менее вносят.
Альтернативный подход состоит в том, чтобы пометить отдельные клоны (клетки, произошедшие от одной и той же родительской клетки) наследуемой генетической меткой, а потом следить, как меняется численность каждого из них. Если численность какого-то клона вдруг начала экспоненциально расти, в то время как число всех особей популяции остается постоянным, значит, у одного из представителей этого клона возникла полезная мутация. При этом скорость роста является мерой полезности мутации. Например, если рост численности клона описывается уравнением N = N>0 × (1 + 0,05)>t, где время t измеряется в поколениях, значит, мутация повысила приспособленность на 5 % (в таких случаях говорят, что полезность мутации, обозначаемая буквой s, равна 0,05).
Именно такое маркирование и осуществили американские биологи, продемонстрировав настоящий прорыв в технике наблюдений за эволюцией многомиллионных популяций (Levy et al., 2015). Ученые работали с двумя бесполыми популяциями дрожжей (их искусственно лишили способности к половому размножению, так что они размножались только почкованием) численностью по 10>8 клеток. Популяции были произведены от одной-единственной предковой клетки, то есть изначально геномы всех дрожжей были одинаковыми. В каждой популяции были помечены индивидуальными генетическими метками примерно по 500 000 клонов. Как это удалось сделать? Сначала изготовили большую коллекцию кольцевых молекул ДНК — плазмид, — содержащих случайные двадцатинуклеотидные последовательности (генетический «штрихкод»). Эти плазмиды внедрялись в дрожжевые клетки, геномы которых были предварительно модифицированы таким образом, чтобы плазмиды встраивались в строго определенное место генома при помощи особого фермента — Cre-рекомбиназы. В итоге удалось получить две популяции численностью по 10>8 клеток, в которых каждая клетка принадлежала к одному из полумиллиона помеченных клонов.
Затем в течение 168 поколений обе популяции адаптировались к «голодной» среде, где размножение ограничивалось количеством глюкозы (как и в эксперименте Ленски). Численность каждого клона отслеживалась путем массового секвенирования небольшого фрагмента генома, содержащего «штрихкод». Секвенировать приходилось лишь 0,002 % генома, что позволило резко увеличить разрешающую способность метода по сравнению с полногеномным секвенированием. В поле зрения исследователей попали даже те мутации, частота встречаемости которых в популяции никогда не превышала 10>–5, тогда как секвенирование полных геномов позволило бы отследить лишь клоны с относительной численностью 10>–2 и выше. В результате вместо 25 000 зарегистрированных мутаций исследователи сумели бы обнаружить лишь около 15 (для сравнения вспомним, что в Исследовании № 3 удалось проследить судьбу только тех мутаций, чья частота встречаемости достигала 10 %, то есть 10>–1, или более).