В начале века эта тайна была разгадана австрийским физиком Людвигом Больцманом, одним из великих теоретиков классической термодинамики. Больцман вложил новый смысл в понятие энтропии и установил связь между энтропией и порядком. Следуя рассуждениям основателя статистической механики Джеймса Кларка Максвелла17, Больцман предложил простой мысленный эксперимент, позволяющий исследовать энтропию на молекулярном уровне18.
Представьте, что у нас есть коробка, рассуждал Больцман, разделенная на два равных отсека воображаемой перегородкой в центре, и восемь различных молекул, пронумерованных от единицы до восьми подобно бильярдным шарам. Сколько существует способов такого распределения этих частиц в коробке, чтобы их определенное количество находилось по левую сторону перегородки, а остальные — по правую?
Для начала поместим все восемь частиц в левый отсек. Это можно сделать лишь одним способом. Если же мы решим поместить семь частиц налево, а одну — направо, то получим восемь способов, так как единственной частицей в правом отсеке может быть любая из восьми частиц. Поскольку молекулы различны, эти восемь способов представляют собой различные комбинации. Подобным же образом, существует 28 различных комбинаций для шести частиц слева и двух справа.
Для всех этих перестановок легко вывести общую формулу19. Из нее следует, что количество способов увеличивается по мере того, как уменьшается разность между числом частиц слева и справа, достигая максимума (70 различных комбинаций) при равном распределении молекул, по четыре на каждой половине (рис. 8–2).
Больцман называл различные комбинации комплексиями и связывал их с понятием порядка — чем меньше комплексий, тем выше порядок. Таким образом, в нашем примере первое состояние со всеми восемью частицами на одной стороне отражает самую высшую степень порядка, тогда как равное распределение с четырьмя частицами на каждой стороне представляет максимальный беспорядок.
Рис. 8–2. Мысленный эксперимент Больцмана
Важно подчеркнуть, что концепция порядка, представленная Больцманом, — это концепция термодинамическая: молекулы находятся в непрерывном движении. В нашем примере перегородка коробки чисто воображаемая, и молекулы в своем беспорядочном движении свободно проходят сквозь нее. В разные моменты времени газ находится в различных состояниях, т. е. количество молекул в отсеках коробки бывает различным; и для каждого из этих состояний число комплексий связано с его степенью порядка. Это термодинамическое определение порядка совершенно отлично от жестких представлений о порядке и равновесии в ньютоновской механике.
Рассмотрим другой пример больцмановской концепции порядка, более близкий к нашему повседневному опыту. Представьте, что мы наполняем мешок двумя видами песка — нижнюю половину черным песком, а верхнюю белым. Это состояние высокого порядка; здесь существует лишь одна возможная комплексия. Затем мы встряхиваем мешок, чтобы смешать частицы песка. По мере того как белый и черный песок смешиваются все больше и больше, число возможных комплексий возрастает, а вместе с ней и степень беспорядка, пока мы не получим однородную смесь, состоящую из серого песка, — и максимальный беспорядок.
Введя такое определение порядка, Больцман смог анализировать поведение молекул в газе. Используя статистические методы, разработанные Максвеллом для описания беспорядочного движения молекул, Больцман отметил, что число возможных комплексий любого состояния является мерой вероятности того, что газ окажется в этом состоянии. Вот как определяется вероятность. Чем больше комплексий существует для определенной комбинации, тем больше вероятность того, что это состояние установится в газе при беспорядочном движении молекул.
Таким образом, число возможных комплексий для определенной комбинации молекул измеряет как степень порядка этого состояния, так и вероятность его установления. Чем выше число комплексий, тем больше беспорядок и выше вероятность того, что газ окажется в этом состоянии. Так Больцман пришел к выводу, что движение от порядка к беспорядку есть движение от менее вероятного состояния к более вероятному. Выражая энтропию и беспорядок через число комплексий, он ввел определение энтропии на языке вероятностных представлений.