Паутина жизни. Новое научное понимание живых систем - страница 80

Шрифт
Интервал

стр.

Каждый великий период науки предполагал некоторую модель природы. Для классической науки это были часы; для XIX века, периода Промышленной Революции, это был глохнущий мотор. Какой же символ изберем мы? Наше разумение может быть выражено ссылкой на скульптуру — от индейского, доколумбового искусства до наших времен. В самых прекрасных произведениях скульптуры, будь то танцующий Шива или миниатюрные храмы Герреро, отчетливо проявляется стремление соединить покой с движением, время остановленное с временем уходящим. Мы убеждены, что это противоречие подарит нашему времени свою неповторимость5.

Неравновесные состояния и нелинейность

Ключ к пониманию диссипативных структур лежит в осознании того, что они поддерживают себя в устойчивом состоянии, далеком от равновесия. Эта ситуация настолько отличается от феномена, описываемого классической наукой, что мы сталкиваемся с трудностями традиционного языка. Словарные определения понятия «устойчивый» включают «фиксированный», «не колеблющийся» и «неизменный» — все они неадекватно описывают диссипативные структуры. Живой организм характеризуется непрерывным потоком и изменениями в обмене веществ, включающем тысячи химических реакций. Химическое и тепловое равновесие наступает тогда, когда все эти процессы прекращаются. Другими словами, организм в состоянии равновесия — это мертвый организм. Живые организмы непрерывно поддерживают себя в далеком от равновесия состоянии, которое, по сути, есть состояние жизни. Сильно отличаясь от равновесия, это состояние, тем не менее, сохраняет устойчивость в течение продолжительных периодов времени, что означает, как и в случае вихря, что поддерживается одна общая структура, несмотря на непрекращающийся поток и изменение компонентов.

Пригожий понял, что классическая термодинамика — первая наука, трактующая сложные системы, — не подходит для описания далеких от равновесия систем из-за линейной природы ее математической структуры. Близко к состоянию равновесия — в диапазоне классической термодинамики — находятся процессы типа потока, однако они слабы. Система всегда развивается в сторону стационарного состояния, в котором генерация энтропии (или беспорядка) сведена к минимуму. Другими словами, система минимизирует свои потоки, функционируя предельно близко к состоянию равновесия. В этом диапазоне потоковые процессы могут быть описаны линейными уравнениями.

Чем дальше от равновесия, тем потоки становятся сильнее, увеличивается выработка энтропии, и тогда система больше не стремится к равновесию. Наоборот, здесь уже могут встретиться неустойчивости, ведущие к новым формам порядка, которые отодвигают систему все дальше и дальше от состояния равновесия. Другими словами, вдали от равновесия диссипативные структуры могут развиваться в формы все более возрастающей сложности.

Пригожин подчеркивает, что характеристики диссипативной структуры не могут быть выведены из свойств ее частей, но обусловлены «сверхмолекулярной организацией»6. Корреляции дальнего типа проявляются как раз в точке перехода от равновесия к неравновесному состоянию, и, начиная с этого момента, система ведет себя как единое целое.

Вдали от равновесия потоковые процессы в системе взаимосвязаны через многочисленные петли обратной связи, а соответствующие математические уравнения нелинейны. Чем дальше диссипативная структура от равновесия, тем выше степень сложности и нелинейности описывающих ее математических уравнений.

Учитывая критическую связь между неравновесным состоянием и нелинейностью, Пригожий и его коллеги разработали нелинейную термодинамику для далеких от равновесия систем, использовав для этого аппарат теории динамических систем — новую математику сложных систем, которая тогда только начинала развиваться7. Линейные уравнения классической термодинамики, как отмечал Пригожий, можно анализировать с помощью точечных аттракторов. Какими бы ни были начальные условия системы, она «увлекается» к стационарному состоянию с минимальной энтропией, предельно близко к равновесию, и ее поведение полностью предсказуемо. Как выражается Пригожий, системы в линейном диапазоне «склонны забывать свои начальные условия»8.


стр.

Похожие книги