Паутина жизни. Новое научное понимание живых систем - страница 59

Шрифт
Интервал

стр.

Тем не менее не все можно осуществить через топологическую трансформацию. Фактически топология занимается как раз теми свойствами геометрических фигур, которые не изменяются при их трансформации. Пересечения линий, например, остаются пересечениями, а отверстие в торе (бублике) нельзя трансформировать так, чтобы оно пропало. Таким образом, бублик может быть топологически трансформирован в кофейную чашечку (отверстие превратится в отверстие ручки), но никак не в блин. Тогда топология оказывается действительно математикой взаимоотношений, неизменяемых, или инвариантных, паттернов.

Пуанкаре использовал топологическую концепцию для анализа качественных особенностей сложных динамических проблем — и тем самым заложил основы математики сложных систем, которая сформировалась лишь столетие спустя. Среди проблем, проанализированных Пуанкаре, была знаменитая проблема трех тел в небесной механике (относительное движение трех тел под влиянием их взаимного гравитационного притяжения), которую прежде никому не удавалось решить1'. Применив свой топологический метод к слегка упрощенной проблеме трех тел, Пуанкаре смог определить общую форму их траекторий, и нашел, что она отличается устрашающей сложностью:

Когда пытаешься представить фигуру, образуемую этими двумя кривыми и бесконечными их пересечениями… обнаруживаешь некую сеть, паутину, или бесконечно густую решетку; ни одна из этих кривых никогда не может пересечь саму себя, но должна загибаться очень сложным образом, чтобы пересечь нити паутины бесконечно много раз. Поражает сложность этой фигуры, которую я даже не пытаюсь нарисовать12.

То, что Пуанкаре изображал в уме, теперь называется странным аттрактором. По словам Яна Стюарта, «Пуанкаре видел отпечатки ступней хаоса»12. Показав, что простые детерминированные уравнения движения могут порождать невообразимую сложность, не поддающуюся никаким попыткам предсказания, Пуанкаре бросил вызов самим основам ньютоновской механики. Однако по очередной причуде истории, ученые начала века не приняли этот вызов. Через несколько лет после того, как Пуанкаре опубликовал свою работу по проблеме трех тел, Макс Планк открыл энергетические кванты, а Альберт Эйнштейн опубликовал свою специальную теорию относительности14. В течение второй половины века физики и математики были зачарованы революционными открытиями в квантовой физике, теории относительности, а важнейшее открытие Пуанкаре отошло на задний план. Так продолжалось до 60-х годов, когда ученые вновь столкнулись со сложностями хаоса.

Траектории в абстрактных пространствах

Математический аппарат, позволивший ученым в течение трех последних десятилетий обнаружить упорядоченные паттерны в хаотических системах, основан на топологическом подходе Пуанкаре и тесно связан с развитием компьютеров. С помощью современных высокоскоростных компьютеров ученые могут решать нелинейные уравнения такими методами, которые ранее были недоступны; легко могут вычерчивать сложные траектории, которые Пуанкаре даже не пытался изобразить.

Как большинство читателей помнят со школьной скамьи, уравнение решают посредством различных манипуляций с ним, пока не получают окончательную формулу — решение. Оно и называется «аналитическим» решением уравнения. Результатом всегда является формула. Большинство нелинейных уравнений, описывающих естественные явления, слишком сложны для того, чтобы их можно было решить аналитически. Однако есть еще один способ — так называемое «численное» решение уравнения. Оно включает в себя метод проб и ошибок. Вы пробуете разнообразные комбинации чисел для переменных, пока не найдете те, которые удовлетворяют уравнению. Была разработана специальная техника и специфические приемы для эффективного решения этой задачи, но для большинства уравнений подобный процесс оказывается слишком громоздким, занимает много времени и дает очень грубые, приблизительные решения.

Ситуация изменилась с появлением нового поколения компьютеров. Теперь у нас есть программы для исключительно быстрого и точного численного решения уравнений. Применяя новые методы, мы можем решать нелинейные уравнения с любой степенью точности. Тем не менее это решения совершенно иного плана. Результатом становится не формула, а огромное множество значений переменных, удовлетворяющих уравнению, и компьютер можно запрограммировать так, чтобы он графически вычерчивал решение в виде кривой или множества кривых. Такая технология позволила ученым решить сложные нелинейные уравнения, связанные с хаотическими феноменами, и обнаружить порядок в кажущемся хаосе.


стр.

Похожие книги