Рис. 7.1
Покажем теперь, что геометрически очевидное соотношение (2) это и есть, в сущности, другая (причем более симметричная!) форма записи комбинаторного равенства (1).
Действительно, длина любого маршрута из A в B равна в точности m + k. Пронумеруем теперь шаги произвольно взятого маршрута. Очевидно, что каждый маршрут полностью характеризуется номерами шагов, направленных вверх (этих шагов всего должно быть k штук). Тем самым каждый маршрут однозначно соответствует выбору k чисел из множества{1,2,…, m + k}.
Следовательно,
и мы можем переписать (2) в виде
Полагая здесь n = m + k, приходим к искомому равенству (1).
8. ЧЕМУ РАВЕН НУЛЬ-ФАКТОРИАЛ?
Объясняя студентам – будущим педагогам начальных классов – начала комбинаторики, неизбежно приходится вводить функцию n! («эн-факториал»). С педагогической точки зрения здесь имеется одно довольно узкое место.
Мы полагаем по определению, что
n! = n(n–1)(n–2)·…·2 ·1 при n ≥ 1, (1)
а при n = 1 считаем опять же по определению, что
0! = 1. (2)
Соотношение (1) обычно не вызывает никаких затруднений – здесь все ясно: мы имеем дело с произведением всех натуральных чисел от n до 1. Но откуда берется соотношение (2)? Если не дать разумного, адекватного объяснения, четко указав то место, где действительно используется соглашение (2), то весь материал, связанный с биномиальными коэффициентами, будет воспринят отчасти на веру.
И тут у преподавателя, знакомого, естественно, с Гамма-функцией Эйлера, появляется искушение объяснить происхождение формулы (2) следующим образом.
При n > 1, очевидно, имеем
n! = (n–1)! · n. (3)
Мы хотим сохранить это же самое соотношение при n = 1. Подставляя в (3) n = 1, получаем
1! = 0!·1, (4)
откуда и следует (2).
Однако соотношение (4) нигде в курсе комбинаторики не
используется, и в результате остается непонятным, нельзя ли было положить 0! равным какому-нибудь другому числу, отличному от 1.
Выход из положения здесь, на наш взгляд, такой. Соображения (3), (4) можно (но не обязательно) рассказывать студентам в качестве дополнительного материала, но не стоит давать их непосредственно после формулы (2) для ее «оправдания».
Вместо этого, чтобы оправдать соглашение (2), на наш взгляд, следует сказать, что для того чтобы формулы, которые вскоре появятся, имели единообразный вид при всех n ≥ 0 (а не только при n ≥ 1) нужно, чтобы выражение
(5)
равнялось 1. (Действительно, как известно, каждое выражение вида при 0 < k < n представляет собой число сочетаний из n элементов по k элементов, т.е. число способов выбрать какие-нибудь k элементов из n данных элементов. При k = 0, очевидно, существует только один такой способ – не брать ни одного элемента.)
Поэтому неизбежно принятие соглашения (2). В результате, мы избегаем неприятного порочного круга в задаче: «Сколькими способами можно выбрать 0 элементов из n элементов?»
(Имеется в виду следующий порочный круг: «Число этих способов равно числу сочетаний из n элементов по 0 элементов, т.е. равно выражению (5). Подставляя в (5) определение (2) для 0!, получаем в ответе 1»).
9. ЗАДАЧА О СОСТАВЛЕНИИ БУКЕТА
Среди комбинаторных задач имеется серия таких, к которым правило произведения на первый взгляд неприменимо, и оттого эти задачи кажутся начинающему сложными. Однако при помощи простого рассуждения задачи этой серии могут быть переформулированы и затем решены именно с помощью вышеупомянутого правила произведения.
В качестве примера разберем одну из таких задач; прием, которым мы воспользуемся, заслуживает, на наш взгляд, специального рассмотрения на занятиях, посвященных комбинаторике.
Задача 1. Имеется 5 одуванчиков и 19 репейников. Сколькими способами можно составить из них букет, состоящий из трёх одуванчиков и семи репейников?
Решение. Букет, очевидно, представляет собой неупорядоченное множество, элементы которого выбираются из двух других непересекающихся неупорядоченных множеств – множества одуванчиков: