Рассматриваемое оптимизационное пространство можно условно считать унимодальным. Это утверждение основывается на том, что оптимальная область возвышается достаточно высоко над остальной поверхностью (в случае двумерной оптимизации пространство можно называть поверхностью). Вместе с тем, поскольку данная поверхность не является гладкой, утверждение об унимодальности можно вполне оспорить. Помимо оптимальной области, данная поверхность содержит еще множество участков, в которых значение целевой функции не просто положительно, а колеблется в пределах довольно неплохого диапазона (2–4 %). По этой причине данную поверхность можно в принципе считать полимодальной. Хотя вопрос классификации не является для нас первостепенным, сам факт наличия локальных максимумов заставляет задуматься о том, что глобальный максимум может оказаться не самым лучшим решением. Если какой-нибудь локальный максимум имеет значение целевой функции, не слишком уступающее глобальному максимуму, но при этом его робастность существенно выше робастности глобального максимума, то вполне может оказаться, что наилучшим решением будет выбрать такой локальный максимум в качестве оптимального решения. Сделать объективный выбор можно, только применив какую-нибудь количественную методику, чему будет посвящен раздел 2.5.
Для того чтобы получить полное представление о форме и свойствах оптимизационного пространства, показанного на рис. 2.2.2, необходимо было вычислить значения целевой функции во всех 3600 узлах. Поскольку данная оптимизация рассчитывалась на 10-летней базе данных (как и все прочие оптимизации, рассматриваемые в этой главе), расчет одного узла занял порядка одной минуты. Соответственно, расчеты для всего оптимизационного пространства заняли порядка 60 часов. Для нашего исследования это вполне приемлемо, но для оперативной практической работы такие большие временные затраты не всегда допустимы. Особенно если учесть, что в реальности может быть больше двух параметров, и каждый параметр может иметь больше 60 значений в своем диапазоне. Кроме того, 3600 – это число узлов, которые необходимо вычислить только для одной целевой функции, а их обычно бывает больше (около трех-четырех). Поэтому на практике в большинстве случаев невозможно вычислить все оптимизационное пространство. Вместо этого приходится применять методы целенаправленного поиска оптимального решения (этому вопросу посвящен раздел 2.7).