Если вновь обратиться к аллегории с камнями и прудом, в игру вступит еще один фактор. Так же как важны интенсивность стимула (сила броска), его значимость (размер камня), готовность к восприятию (вязкость водоема), важен и оборот ансамблей в течение определенного периода времени. Он имеет ключевое значение для определения сценария, который связывает полученный опыт с каждым конкретным моментом сознания.
Активность любого отдельного нейронного ансамбля исчезает во времени и пространстве спустя несколько сотен миллисекунд, и именно таков ключевой порог, выявленный Бенджамином Либетом и его коллегами для формирования сознания.[372] Таким образом, ни один ансамбль не может быть прямым коррелятом текущего сознания. Но что, если затухание каждого конкретного ансамбля впоследствии становится важным фактором для создания чего-то более значительного и гораздо более обширного? Это «что-то еще» было бы своего рода единой, целостной сущностью, охватывающей пространство и время. Давайте же разберемся, как такая гипотетическая вещь – это «что-то еще» – может быть реализована. Наиболее вероятный сценарий заключается в том, что во всем мозге происходит множественная генерация ансамблей, которые синергируют и суммируются в течение определенного периода времени.
Такой эффект до сих пор не выявлен в живом мозге при помощи экспериментальных методов – не в последнюю очередь потому, что мы еще не сформулировали, что именно нужно искать. Но теоретическая наука могла бы по крайней мере помочь нам сформировать гораздо более четкую картину того, какие именно процессы в мозге вносят вклад в формирование сознания. Давайте подумаем, как можно моделировать гипотетические нейронные ансамбли. Или продвинемся еще дальше и попытаемся выяснить, как несколько ансамблей способны взаимодействовать друг с другом в течение заданного временного интервала. Но прежде нам нужно определить необходимый и достаточный набор элементов, которые сделают возможным существование хотя бы единичного ансамбля.
Принято считать, что наименьшая функциональная структура для передачи информации в мозге – это синапс. Поэтому кажется естественным предположение, что динамика нейронного ансамбля будет определяться главным образом процессом синаптической передачи. Но если допустить, что ансамбль – лишь конгломерат синапсов, то общая картина была бы совсем иной, нежели та, что мы видим в реальности.
Границы ансамбля (см. рис. 2) простираются на расстояния, в несколько раз превышающие прогнозируемые согласно классическим представлениям о синаптической передаче.[373] Что касается времени, мы знаем, что для затухания активности в пределах ансамбля до 20 % от максимального уровня, требуется около 300 миллисекунд[374] и что потребуется еще больше времени, чтобы активность полностью исчезла.[375] Но помимо этого мы знаем, что временные рамки синаптической активности не превышают 20 мс.[376]
Наглядно иллюстрирует эти временные рамки рис. 7. Обратите внимание, что хотя передача сигнала от таламуса к коре путем классической синаптической передачи занимает всего пять миллисекунд на каждые два миллиметра, требуется еще двадцать миллисекунд, чтобы ансамбль распространился внутри коры.[377] Здесь вступают в игру два особых способа общения между клетками мозга: один имеет преимущество в виде большего масштаба (объемная передача), в то время как другой гораздо более минималистичный (щелевые контакты). Давайте кратко рассмотрим каждый из них.
Рис. 7. Нейронные ансамбли в срезе крысиного мозга, визуализированные с помощью потенциал-чувствительных красителей (Fermani, Badin&Greenfield). В то время как нормальная синаптическая передача занимает 5 мс на 2 мм от таламуса до коры, последующее формирование ансамбля занимает в четыре раза больше времени (для достижения радиуса 0, 5 мм)
Объемная передача обеспечивает менее специфичное и значительно более медленное взаимодействие между нейронами, но ее преимущество состоит в том, что она затрагивает гораздо больше клеток. За последние тридцать лет этот прежде революционный механизм был тщательно исследован и теперь рассматривается как альтернатива классической синаптической передачи.