Очевидное? Нет, еще неизведанное… - страница 45

Шрифт
Интервал

стр.

Никакого аналитического выражения Декарту, конечно, получить не удалось. Однако ученых того века в его гипотезе пленяла прелесть очевидности и наглядности.

Весьма ядовито характеризовал научную атмосферу того времени Мари Франсуа Вольтер, увлекавшийся в молодости физикой:

«Если француз приедет в Лондон, он найдет здесь большое различие в философии, а также во многих других вопросах.

В Париже он оставил мир полным вещества, здесь он находит его пустым. В Париже вселенная наполнена эфирными вихрями, тогда как тут, в том же пространстве, действуют невидимые силы.

В Париже давление Луны на море вызывает отлив и прилив, в Англии же, наоборот, море тяготеет к Луне.

У картезианцев все достигается давлением, что, по правде говоря, не вполне ясно, у ньютонианцев все достигается притяжением, что, однако, не намного яснее.

Наконец, в Париже Землю считают вытянутой у полюсов, как яйцо, а в Лондоне она сжата, как тыква…»

Декарт часто подписывался «Картезий». Отюда картезианство, картезианцы.

Эти слова написаны в 1727 году (40 лет прошло с появления «Начал»!), а скептицизм Вольтера распространяется, как видите, в равной мере на теории Ньютона и Декарта.

Так что закон тяготения проникал в умы с великим трудом.

Но как ни медленно побеждала истина, к началу XIX столетия все сомнения в справедливости закона Ньютона исчезли. Причем интересно, что именно французские ученые второй половины XVIII столетия окончательно отшлифовали небесную механику и показали, что теория тяготения истинна и нет истины вне ее.

Закон тяготения, может быть, высшее достижение метода принципов. В нем ни слова не говорится о том, почему действует тяготение. Он отвечает только, как действует эта загадочная сила:


И вот, наконец, сам закон тяготения.

Здесь F — сила притяжения между двумя любыми телами, m>1 и m>2 — их массы, r — расстояние между телами, f — постоянная размерная величина, численно равная силе притяжения двух тел единичной массы, разделенных единичным расстоянием. Называется она гравитационной постоянной в системе CGS

f = 6,7 · 10>-8см>3/сек>2·г.

Ничтожно малое значение f и объясняет, почему мы не замечаем сил притяжения между земными предметами.

В законе Ньютона обращают на себя внимание по меньшей мере три поразительных факта.

Удивление № 1.

Бросается в глаза удивительная аналогия характера гравитационных сил с взаимодействием совершенно другой природы — электрических зарядов (закона Кулона).

F = ±[e>1] · [e>2]/r>2.

Мы не будем касаться причин этого любопытного совпадения и ограничимся констатацией факта. Правда, с другой стороны, есть и кардинальное отличие: гравитационные «заряды» имеют всегда только один знак.

Удивление № 2.

Закон Ньютона предполагает, и на этом мы задержимся дольше, что тяготение распространяется с бесконечно большой скоростью.

Действительно, закон тяготения подразумевает, что для определения силы притяжения в каждый данный момент времени достаточно знать расстояние между телами в тот же самый момент времени. Как изменяется расстояние со временем, совершенно не существенно, — говоря учено, несущественна пространственно-временная биография взаимодействующих тел.

Посмотрим, что изменилось бы в законе Ньютона, если бы скорость тяготения была конечна, а во всем остальном закон взаимодействия остался бы прежним.

Допустим, два тела взаимодействуют по закону Ньютона. При этом тяготение распространяется с конечной скоростью с. Если тела покоятся — все остается по-старому. Но не то, если они движутся друг относительно друга.



Конечно, в первую очередь возникает вопрос, что означает: скорость распространения тяготения конечна и равна с? В какой системе отсчета? Поэтому примем условно некую «абсолютную систему», в которой скорость тяготения и есть с.

Мы не знаем и не хотим знать, почему скорость распространения тяготения конечна: может быть, потому, что тела постоянно посылают волны тяготения, которые распространяются в пространстве с конечной скоростью, может быть, по другой причине. Мы хотим просто установить, как изменится при этом закон Ньютона.

Для простоты рассмотрим только тот случай, когда первое тело покоится в нашей «абсолютной системе отсчета». Пусть в момент времени


стр.

Похожие книги