Очевидное? Нет, еще неизведанное… - страница 40

Шрифт
Интервал

стр.

Так как неинерциальность системы отсчета Земли сравнительно малозаметна, при решении многих механических задач можно использовать законы Ньютона. Но, с другой стороны, для широкого класса задач неинерциальность Земли приходится учитывать. Например, описывая движение спутника в системе отсчета, связанной с Землей, совершенно необходимо учитывать силы инерции. Если о них забыть, можно получить поразительные нелепости.

В повседневной жизни каждый из нас несколько раз в день оказывается в «сильно неинерциальной» системе отсчета. Когда троллейбус равномерно и прямолинейно едет по улице, неинерциальность системы отсчета «троллейбус» связана только с неинерциальностью системы «Земля». Мы ее не замечаем. Но стоит водителю внезапно затормозить или резко увеличить скорость, как троллейбус становится «сильно неинерциальной» системой, и сила инерции бросает нас вперед или назад.

Вероятно, и водитель и недовольные пассажиры не очень представляют, что в конечном счете все неудобства ускоренной езды вызваны тем, что троллейбус тормозит относительно неба неподвижных звезд.

Несколько неожиданное замечание, которым автор очень гордится.

В заключение отметим, что если учитывать силы инерции, то формально законы Ньютона сохраняются и в неинерциальных системах отсчета, хотя содержание их несколько иное — к реальным силам приходится добавлять некие силы инерции не совсем понятной природы.

Весьма любопытное место.

А теперь можно поставить тот вопрос, ради которого и был затеян весь разговор о неинерциальных системах: почему, собственно, мир устроен так, что равномерное и прямолинейное движение относительно неба неподвижных звезд не связано ни с какими заметными воздействиями на тело, а неравномерное или непрямолинейное движение требует приложения силы? Другими словами, этот же вопрос можно сформулировать так: можно ли предложить какое-либо разумное обоснование того факта, что существуют неинерциальные системы отсчета?



На первый взгляд может показаться, что подобный вопрос относится к «проблемам» такого рода, как «Почему вода мокрая?» или «Почему в бублике дырка?». Однако это не так.

Законы Ньютона мы «привязываем» к вполне определенной физической системе — системе неподвижных звезд. При этом, как помните, было сделано интуитивно вполне естественное физическое предположение, что все процессы в солнечной системе никак не зависят от остальных звезд. Только тогда можно утверждать, что система неподвижных звезд инерциальна.

Законы механики, как оказывается, таковы, что все системы, равномерно и прямолинейно движущиеся относительно неподвижных звезд, совершенно равноправны. Никакой механический опыт не позволит выделить какую-то одну, особую систему.

Хорошо, мы готовы принять это довольно спокойно. Так устроен мир.

Но стоит перейти к любой из систем, ускоренно движущихся относительно неба неподвижных звезд, положение резко меняется.

Законы механики в таких системах выглядят совершенно по-другому: в таких системах приходится вводить некие особые силы инерции; причем совершенно неясно, чем система отсчета, ускоренно движущаяся относительно звезд, хуже (или лучше, как угодно!) инерциальных систем отсчета. Не видно никаких физических причин, по которым ускоренное движение относительно далеких неподвижных звезд должно отличаться от равномерного и прямолинейного. И то, что такое отличие существует, несколько странно и настораживает.

Интуитивно чувствуется, что мы столкнулись с чем-то очень существенным, с каким-то из тех основных вопросов, которые занимают физика. Но разрешите ограничиться только указанием, что за неравноправием инерциальных и неинерциальных систем скрывается что-то непонятное и удивительное.

Совершенно новую постановку проблема неинерциальных систем получила в общей теории относительности Эйнштейна, но, к сожалению, в нашей беседе мы не в состоянии говорить об этом>[28].

Чтобы достойно закончить разговор о законах Ньютона, стоит сделать еще одно замечание о принципе относительности Галилея.

Много раз уже говорилось: законы механики таковы, что все явления одинаково протекают в инерциальных системах отсчета. Все инерциальные системы равноправны.


стр.

Похожие книги