, это неправильно. Мы быстро договоримся с этим наблюдателем, с какой точки зрения описывать реальный мир. Вероятно, будет избрана наиболее простая и логически более стройная система законов. Но это уже другой вопрос. Важно, чтобы оба описания отражали реальность.
Впрочем, и звездные сутки сейчас «скомпрометированы». Самые надежные эталоны — кварцевые, молекулярные и атомные часы.
Как видите, для выяснения, казалось бы, абсолютно четких слов «в действительности» потребовался сложный анализ.
Почему стоило потратить на это время?
Только для того, чтобы по возможности ясно представить природу физических понятий. После этого идеи и выводы Эйнштейна не должны особенно смущать. Так что сейчас мы страдаем для будущего.
…Теперь дадим рецепт измерения времени и покончим с этим понятием.
Чтобы измерить длину, необходимо было уметь делить эталон длины на сколь угодно малые равные части. Аналогично, чтобы измерить время, необходимо уметь делить на малые равные части эталон времени.
Возвращение к рецепту измерения времени. Этот отрывок имеет особое значение для понимания теории Эйнштейна.
С длиной было сравнительно просто — нас выручила геометрия. Но понятие времени в геометрии отсутствует, и придется обойтись без помощи математиков.
Разбить эталон любой физической величины на равные отрезки — значит ввести, по существу, в семейство эталонов новый, меньший эталон. Мы всегда сможем его найти среди бесчисленного числа физических процессов, нас окружающих>[13].
Если есть эталон — часы, то, чтобы измерить продолжительность любого физического процесса, достаточно засечь показания часов одновременно с его начальным и конечным моментами. Интервал времени, прошедший на часах, и определяет продолжительность исследуемого явления.
Но что значит, что два физических события произошли в одной точке пространства одновременно? Кажется, это довольно очевидно. Однако, чтобы читатель знал, что его страдания не напрасны, заметим: это «очевидное» понятие — центральный пункт теории Эйнштейна.
Дадим строгое определение:
Определение 1. Два события, происшедших в одной и той же точке пространства, и таких, что, вообще говоря, любое из них может быть причиной или следствием другого, называются одновременными в том единственном случае, когда ни одно из них не может быть причиной или следствием другого.
Это определение остается и в теории Эйнштейна.
Ясно и логично. Не так ли? После такого определения нам не составит никакого труда сравнить, например, ход двух часов, находящихся в одной точке пространства.
А как это сделать с часами, находящимися в разных точках?
Кажется, тоже ясно. Надо одновременно засечь показания обоих часов.
Но как это сделать? Ведь мы определили понятие «одновременности двух событий, происшедших в одной точке». А что означает: «два события произошли одновременно в разных точках пространства»?
Приходится дать еще одно определение.
Определение 2. Два события, происшедших в разных точках пространства, называются одновременными в том единственном случае, когда ни одно из них не может быть причиной или следствием другого.
А вот это определение пришлось существенно изменить.
Итак, определение дано. Но вот что осталось неясным. Пусть в одной точке пространства X>1 произошло событие A. Вообще говоря, пройдет некоторое время, прежде чем в другой точке — X>2 — смогут узнать, что это событие произошло.
Пожалуй, стоит пояснить эти несколько абстрактные рассуждения примером.
Совсем недавно в газете появилась заметка «Секундомеры щелкают одновременно». Речь шла о том, что раньше судья на финише беговой дорожки не мог точно зафиксировать момент стартового выстрела. Пока звук доходил от старта к финишу, терялись десятые доли секунды (для стометровой дорожки — больше 0,2 сек.). Теперь к пистолету судьи-стартера приделана лампа-вспышка, синхронно срабатывающая с выстрелом, и судья на финише пускает секундомер, как только увидит свет>[14]. Считается, что эти события (выстрел и пуск секундомера) происходят одновременно. Но если рассуждать строго, придется признать, что выстрел на старте (точка