О времени, пространстве и других вещах. От египетских календарей до квантовой физики - страница 37

Шрифт
Интервал

стр.

У Венеры, Земли и Марса все-таки есть немного места для спутников. Правда, его очень мало и шансы собрать достаточно вещества даже для маленького спутника невелики.

Так случилось, что ни у Венеры, ни у Земли в обозначенных границах спутников нет, а у Марса их два, но оба имеют такие маленькие размеры (один в диаметре 12 миль, другой — 6), что их и спутниками можно назвать с большой натяжкой.

С чувством глубокого удовлетворения могу отметить, что все мои соображения, приведенные выше, блестяще подтверждаются на практике существующими спутниковыми системами различных планет. И мне немного стыдно, что до сей поры я обходил молчанием одну небольшую деталь, можно сказать, крошечный пустячок…

Какое место в выстроенной мной стройной, изящной системе занимает наша Луна?

Если следовать моим выводам, — а мне они очень нравятся, чтобы легко от них отказаться, — она слишком далеко от Земли, чтобы быть ее настоящим спутником. Но она слишком велика, чтобы быть захваченной гравитационным полем Земли. Шансы на это представляются ничтожными.

Существуют теории, что когда-то Луна находилась намного ближе к Земле (в границах, отведенных мною для настоящих спутников), но постепенно удалилась. У меня на это есть возражение. Если Луна когда-то была настоящим спутником, первоначально кружившим вокруг Земли на расстоянии, к примеру, 20 000 миль, она почти наверняка вращалась бы в плоскости земного экватора. Однако она этого не делает!

Тогда возникает закономерный вопрос: если Луна не является ни настоящим спутником, ни захваченным, что же это такое? Вероятно, вы удивитесь, но ответ у меня есть. Для наглядности давайте вернемся к моим вычислениям «коэффициента перетягивания каната». Для одного спутника я этот коэффициент не вычислил. Давайте сделаем это сейчас.


Среднее расстояние от Земли до Луны — 237 000 миль, а среднее расстояние от Луны до Солнца — 93 000 000 миль. Отношение расстояний — 392. Если это число возвести в квадрат, получится 154 000. Отношение массы Земли к массе Солнца было приведено ранее в этой главе и составляет 0,0000030. Умножив это число на 154 000, получим искомый коэффициент — 0,46.

Иными словами, Луна занимает среди остальных спутников Солнечной системы совершенно особое положение. Она уникальна тем, что ее родная планета — Земля — проиграла соревнование с Солнцем по «перетягиванию каната». Солнце притягивает Луну в два раза сильнее, чем Земля.

Таким образом, мы можем рассматривать Луну не как настоящий или захваченный в гравитационное поле спутник, а как самостоятельную планету, которая движется вокруг Солнца «в ногу» с Землей. Если вы изобразите в масштабе орбиты Земли и Луны вокруг Солнца, то увидите, что лунная орбита постоянно вогнута в сторону Солнца. Она всегда «падает» к Солнцу. Все остальные спутники, причем без единого исключения, «падают» в противоположную сторону.

Не забывайте, что Луна вращается вокруг Земли вовсе не в плоскости земного экватора, как этого следовало ожидать от спутника. Плоскость ее орбиты подходит достаточно близко к эклиптике, то есть к плоскости, в которой планеты обычно вращаются вокруг Солнца. Именно так и должна вести себя планета!

Представляется возможным, что существует некое промежуточное состояние между тяжелой планетой, расположенной далеко от Солнца и представляющей собой ядро с многочисленными спутниками вокруг, и маленькой планетой недалеко от Солнца, которая также является ядром но уже без спутников. Разве не могут создаться условия, при которых произойдет сгущение вещества, и из двух ядер образуется, так сказать, двойная планета?

Возможно, Земля лишь подошла к границе допустимой массы и расстояния, она оказалась немного меньше и чуть ближе, чем нужно. Быть может, если бы мы были немного иначе расположены, две половинки двойной планеты оказались бы больше похожи? На обеих могла быть атмосфера, океаны, а главное — жизнь. Нельзя исключить, что в иных звездных системах двойные планеты — обычное дело.

Как стыдно, если мы прозевали такое…

А быть может (кто знает), какое счастье!

Глава 8

Первая и последняя


стр.

Похожие книги