Однако не вычислительная система греков и не недостаток знаний препятствовали принятию ноля. Греки узнали о нем благодаря своему интересу к ночному небу: как и большинство древних народов, они наблюдали за звездами. Первыми мастерами астрономии были вавилоняне; они узнали, как предсказывать затмения. Фалес, первый греческий астроном, научился этому у вавилонян или, возможно, у египтян. О нем говорили, что в 585 году до н. э. он предсказал солнечное затмение.
Вместе с вавилонской астрономией пришли и вавилонские числа. Для целей астрономии греки использовали шестидесятеричную систему и даже стали делить час на шестьдесят минут, а минуту — на шестьдесят секунд. Около 500 года до н. э. ноль — символ-заполнитель — начал появляться в вавилонских записях; его использование, естественно, распространилось и среди греческих астрономов. Во времена расцвета древней астрономии в греческих астрономических таблицах регулярно использовался ноль; его символом был строчной омикрон «ο», который выглядит очень похоже на наш современный ноль, хотя это, возможно, совпадение. (Использование омикрона могло быть следствием того, что это первая буква греческого слова «ничто» — ouden). Греки не любили ноль и использовали его как можно реже. Выполнив вычисления по вавилонской системе, греческие астрономы обычно переводили числа обратно в громоздкую греческую форму — без ноля. Ноль никогда не использовался в числе древних цифр на Западе, так что маловероятно, что омикрон — прародитель нашего ноля. Греки видели пользу ноля для вычислений, но все равно отвергали его.
Это вызывалось не невежеством и не ограничениями греческой системы «число-форм», а философией. Ноль вступал в противоречие с фундаментальными философскими воззрениями Запада, поскольку ноль содержит две идеи, отравляющие западную доктрину. Действительно, эти концепции со временем разрушили аристотелевскую философию после ее долгого царствования. Опасные идеи были представлениями о пустоте и о бесконечности.
Бесконечность, пустота и Запад
Тебя кусает под одежкой
Блоха, и в свой черед она
Укушена мельчайшей блошкой.
На меньшей меньшая сидит,
И все идет adinfinitum.
Джонатан Свифт. «О поэзии: рапсодия»[7]
Бесконечность и пустота обладали могуществом, которое пугало греков. Бесконечность грозила сделать всякое движение невозможным, а пустота — разбить Вселенную вдребезги. Отвергая ноль, греческие философы придали своему взгляду на Вселенную жизнеспособность на протяжении двух тысячелетий.
Доктрина Пифагора сделалась краеугольным камнем западной философии: Вселенная управлялась отношениями и формами; планеты двигались по небесным сферам и в своем вращении создавали музыку сфер. Но что лежало за их пределами? Существовали ли все бо́льшие и бо́льшие сферы? Была ли самая внешняя из сфер концом Вселенной? Аристотель и более поздние философы настаивали на том, что не может существовать бесконечного числа сложенных друг в друга сфер. Приняв такую философию, Запад отверг возможность существования бесконечности или бесконечного, потому что бесконечность — благодаря Зенону Элейскому, человеку, которого его современники считали совершенно невыносимым, — начинала подгрызать корни западного мышления.
Зенон родился около 490 года до н. э., в начале Греко-персидских войн — великого конфликта между Востоком и Западом. Греки победили персов, однако греческая философия так и не смогла победить Зенона, потому что Зенон придумал парадокс, логическую загадку, которая для греческих философов представлялась неразрешимой. Для греков это был аргумент, вызывающий сильнейшее беспокойство: Зенон доказал невозможное.
Согласно Зенону, никакое движение во Вселенной невозможно[8]. Конечно, это глупое утверждение: любой человек может опровергнуть его, пройдясь по комнате. Хотя всем было ясно, что утверждение Зенона неверно, никто не мог найти ошибки в его рассуждениях. Парадоксы — логические загадки — Зенона ставили в тупик как греческих философов, так и тех, кто пришел после них; они озадачивали математиков почти две тысячи лет.
В своей самой знаменитой загадке — «Ахиллесе» — Зенон доказывает, что быстроногий Ахиллес никогда не догонит неуклюжую черепаху, если она имела преимущество на старте. Чтобы представить это более конкретно, придадим проблеме числовые значения. Предположим, что Ахиллес пробегает один фут в секунду, в то время как черепаха движется со скоростью в два раза меньшей. Предположим также, что черепаха изначально опережала Ахиллеса на один фут.