Неразумная обезьяна - страница 20

Шрифт
Интервал

стр.

Следующим шагом стало избавление от корня, и так как действие в одной части уравнения требует выполнения такого же действия в другой части для сохранения равносильности, Гиппас возвел в квадрат обе части уравнения и после перестановки получил следующее уравнение: 2Q>2 = P>2. На первый взгляд это уравнение мало помогает делу, но Гиппас заметил то, что – в силу своей тривиальности – прежде игнорировалось: P>2 ровно в два раза больше, чем Q>2. Но P>2 может быть четным числом только в том случае, если четным числом является P, а значит, его можно обозначить как 2К. Но вернувшись к нашей предыдущей записи, мы получаем 2Q>2 = (2K)>2 = 4K>2 и, таким образом, можем утверждать, что Q>2 = 2K>2. Снова использовав тот же довод, мы можем утверждать, что Q, по необходимости, является четным числом. Но этого не может быть, так как мы уже определили, что дробь P/Q является несократимой, а отношение двух четных чисел всегда является сократимой дробью. Следовательно, мы пришли к неразрешимому противоречию. Это был поразительный вывод: просто предположив, что совершенное соотношение существует, Гиппас показал, что это допущение приводит к абсурду.

Единственным выходом из противоречия было заключить, что для выражения корня квадратного из 2 не существует рационального числа, то есть – не существует красивого и магического целочисленного соотношения. На горизонте замаячил демон иррациональности, потрясший веру до основания; святости божественной пропорциональности был нанесен сокрушительный удар. Мало того: последовательное применение метода – доказательства от противного – показало, что √2 не является дьявольским исключением, единственной аномалией, для существования которой можно было придумать рациональное обоснование. Наоборот, новый метод доказательства позволил обнаружить и новый класс чисел – чисел, непредставимых в форме точного соотношения и названных иррациональными. Вдобавок, словно для того, чтобы окончательно уязвить пифагорейцев, та же логика привела и к другому открытию: множество иррациональных чисел бесконечно больше, чем множество всех рациональных чисел[8].

Этим своим впечатляющим интеллектуальным подвигом Гиппас вовсе не снискал любви и уважения общины. Легенды по-разному рассказывают о его судьбе, о том, как обошлись с ним оскорбленные последователи Пифагора, и нам очень трудно отделить истину от апокрифов. Но точно известно, что дерзость Гиппаса, осмелившегося осквернить рай пифагорейской общины с помощью ее же собственного инструментария, вызвало ярость секты, и она осудила Гиппаса, обвинив его в нарушении благочестия. Если верить дошедшему до нас рассказу, Гиппас был приговорен к наказанию, предусмотренному за подобное преступление: к утоплению в море. Но хотя пифагорейцы и смогли убить этого человека, они оказались не в состоянии отменить реальность, которую тот открыл. Со временем иррациональность чисел размыла сам фундамент того, что они считали священным. Конечно, математическое понятие иррациональности отличается от ее расхожего определения: “отсутствие разумной логики в словах и действиях”. Но забавная абсурдность описанной ситуации заключается в том, что слепая приверженность пифагорейцев к рациональности была иррациональной, а признание существования иррациональности было единственным рациональным решением!

Противоречия бесценны, потому что предупреждают нас о том, что происходит нечто неправильное. Правда, мы – во вред самим себе – обладаем великолепной способностью игнорировать противоречия. Подумайте: мы буквально купаемся в симфонии невидимого света. Наш глаз воспринимает лишь ничтожную долю электромагнитного спектра, но этот спектр охватывает все цвета, все образы, доступные нашему взгляду. Электромагнитные волны – основа всех типов излучения: от знакомого нам видимого света, озаряющего наш мир, и радиоволн до рентгеновских лучей, совершивших революцию в анатомических исследованиях и терапии рака. В эру беспроводной связи наши телефоны и роутеры, в которых используются все преимущества микроволнового излучения, способны в мгновение ока, по мановению кончиков наших пальцев, предоставить нам всю сокровищницу человеческого знания. Но возможна ли в мире, где стали вездесущими мобильные телефоны и


стр.

Похожие книги