Они освоят диагностику, наблюдение за больными, проведение анализов в медицине или уплотнение каналов связи и ускорение передачи информации в технике связи. Трудно назвать сейчас такую отрасль, где бы микрокомпьютеры не совершили или не совершали революцию.
УМНЫЕ ВЕЩИ
Если бы микропроцессор не сделал ничего более, кроме уменьшения размеров существующих компьютеров, и то он был бы достоин глубокого уважения. Однако микропроцессор сделал больше - он преобразил лицо обычных вещей. Благодаря низкой стоимости стало возможным включить микропроцессор в большинство обычных машин и аппаратов. Любую машину микропроцессор наделил способностью принимать решения, хранить в памяти программу работы и инструкции на различные случаи "жизни", автоматически регулировать свою работу в зависимости от складывающихся условий. За это чудесное преображение микропроцессор достоин самого величественного памятника.
Наша электронная промышленность уже в течение ряда лет выпускает несколько наборов микропроцессоров и типов микро-ЭВМ. Они нашли широкое применение в технологическом оборудовании для производства электронных изделий, и сейчас настал черед внедрения их в различные массовые объекты народного хозяйства. В чем принципиальные преимущества использования в массовых объектах управления микропроцессоров и микроЭВМ?
Главное, пожалуй, состоит в малых габаритах, небольшой потребляемой мощности и в более низкой стоимости микропроцессорных вычислительных систем, которая еще более снижается при использовании однокристальных моделей, где в одной кремниевой пластинке объединены микропроцессор и запоминающие устройства. Уже одно это позволяет применять микровычислительную технику в тех областях, где ранее вычислительные и управляющие машины были недоступны из-за "барьера стоимости" и невозможности организовать выпуск десятков и сотен тысяч машин в год.
Благодаря минимальным размерам микропроцессорную систему можно разместить под суппортом станка, в кабине трактора, в корпусе робота-манипулягора, в магнитофоне, в телефонном аппарате. В сочетании с доступностью это позволяет вводить микропроцессоры в устройства, где ранее применение вычислительной техники было невозможным или нерентабельным.
С применением микропроцессоров уже выпускаются некоторые типы измерительной, связной (в том числе телеграфной), медицинской, бытовой аппаратуры, систем электронного управления металлообрабатывающими станками, автоматизированных систем управления технологическими процессами - АСУТП.
"Одномодульная" ЭВМ внутри кассового аппарата сама оформляет чеки и счета, сама, если нужно, контролирует наличные запасы товаров. В электронных стимуляторах сердечной деятельности она регулирует число ударов сердца. Она устанавливает рабочую температуру в термостатах, настраивает радиоприемники, перекачивает газ по магистральным трубопроводам, управляет режимом работы автомобильных двигателей... Ей доверяются роботы. То же самое можно сказать и о научноисследовательской аппаратуре, такой, как установка для синтеза генов. Машины теперь сумеют работать гибко и осмысленно, и это вызовет взрывообразный рост производительности труда, о котором мы потом в один прекрасный день будем, вероятно, говорить как о "второй промышленной революции".
Еще пример - автомобильный двигатель. Оптимизируя режим его работы, микропроцессор может обеспечить экономию не менее 10 процентов горючего. С его помощью можно создать систему автоматического включения и выключения светильников в жилых помещениях и на лестничных клетках, которая реагирует на присутствие человека. Внедрение таких систем только в крупных городах может обеспечить годовую экономию не менее 1,3 миллиарда киловатт-часов электроэнергии.
Другое перспективное направление использования микропроцессорной техники в быту - устройства, позволяющие отображать на экранах телевизоров тексты с разнообразной справочной информацией, с расписанием движения транспорта, сведения о репертуаре театров и кино, сводки погоды и т. п. Широкое применение найдет микровычислительная техника и в других бытовых радиоэлектронных приборах.