Другой общий принцип организации управления в сложных биологических системах - это способность к обучению, адаптация к заранее неизвестным, меняющимся в довольно широких пределах условиям жизни.
Способность к адаптации присуща не только организму в целом, но и отдельным его органам и даже функциям. Эта способность незаменима в тех случаях, когда одна и та же проблема должна решаться многократно. Таким образом, феномен адаптации играет существенную роль в целесообразном поведении всего живого.
В начале нашего века зоопсихолог Э. Торндайк провел следующий эксперимент с животными. Имелся Т-образный лабиринт с тремя площадками. На площадку, находившуюся в основании буквы Т, помещалось подопытное животное, а на две другие площадки, находившиеся у концов горизонтальной перекладины буквы Т, помещалась приманка. Животное могло делать альтернативный выбор: добежав до развилки, оно могло повернуть к левой площадке или к правой площадке.
Но по пути к приманке его ожидала неприятность.
В стенки коридора были вмонтированы электроды.
С некоторой фиксированной вероятностью на них подавалось напряжение, и тогда пробегавшее мимо них животное получало болевое раздражение - среда выдавала сигнал наказания. Сигналом же поощрения среды была та пища, которая ожидала животное на конечной площадке. Если в эксперименте вероятность раздражения в одном из коридоров (например, в левом) намного превосходила вероятность такого раздражения в другом коридоре (в правом), то естественно было бы считать, что животное адаптируется к условиям среды: после серии пробежек оно будет предпочитать поворачивать в правый коридор, а не в левый. Больше всего Э. Торндайк экспериментировал с крысами. Оказалось, что они быстрее оценивают более безопасный путь и уверенно выбирают его даже при небольшой разнице наказаний.
Другие подопытные животные делали это с разной степенью адаптивности, но способность эта оказалась присущей всем видам животных, участвующих в экспериментах.
Проблема управления интеллектуальным роботом заключается, таким образом, в моделировании способности животного и человека к адаптации.
Иерархическая организация управления роботами - это прежде всего распределение функций восприятия, обработки информации и управления между отдельными уровнями иерархии и подсистемами роботов. Полностью централизованные алгоритмы обработки информации и управления при больших объемах обработки, свойственных роботам третьего поколения, оказываются малоэффективными или даже непригодными. Таким образом, возникновение иерархической адаптивной структуры диктуется в первую очередь стремлением повысить качество управления роботом, то есть уменьшить уровень неопределенности и увеличить быстродействие.
Для функционирования отдельных уровней и подсистем необходим значительно меньший объем информации.
Так возникает распараллеливание алгоритмов, что и позволяет решить задачу в условиях существенно меньшей неопределенности.
Итак, для активной жизни роботов третьего поколения жизненно необходимы "хорошие мозги", ибо именно от степени интеллектуальности робота зависит принадлежность его к тому или иному поколению. Существует даже весьма обоснованная классификация роботов в зависимости от функций его электронного мозга.
Управляемые роботы. Роботы "нулевого поколения" - управляемые человеком манипуляторы - не обладают, естественно, никакими свойствами интеллектуальности - все заключено в операторе.
Обучаемые роботы. Роботы первого поколения имеют память. План и порядок действий задает человек - оператор, а робот всего лишь запоминает (способность обучаться) и воспроизводит.
Очувствленные роботы. План действий задает человек, а робот, запомнив план, вычисляет конкретный порядок действий в зависимости от тех или иных данных внешней среды (обратная связь).
Интеллектуальные роботы. Человек задает лишь цель, а робот сам составляет план операции, определяет порядок действий с учетом реальных условий и превращает действия в движения исполнительных механизмов. Для этого роботу необходимо иметь не только широкую систему чувств, не только интеллект, но и модель окружающей действительности и даже модель самого себя (сознание и самосознание робота).