* * *
В узких закоулках, заполненных жидкостью, которые вьются между клетками мозга, идет бурная активность иного рода, не признающая типичных культурных рамок «мозг-компьютер». Именно в этих крошечных полостях и происходит по большей части химическая жизнь мозга. У некоторых само представление о химических реакциях в мозге ассоциируется с психоделическим опытом употребления ЛСД и каннабиса, но с точки зрения нейрофизиолога словосочетание «биохимия мозга» относится в первую очередь к нейромедиаторам и схожим с ними молекулам-нейромодуляторам. У млекопитающих коммуникация между клетками мозга опирается в основном на нейромедиаторы, которые выделяют нейроны в своих пресинаптических окончаниях. Нейромедиаторы выделяются, когда пресинаптический нейрон «выстреливает», а затем быстро воздействуют на постсинаптический нейрон при помощи особых молекулярных «бейсбольных перчаток» – рецепторов нейромедиаторов – и меняют вероятность «выстреливания» постсинаптической клетки. При нейроноцентрическом представлении о мозге нейромедиаторы в основном служат средством передачи электрических сигналов от нейрона к нейрону. Если считать, что биоэлектрическая активность нервной системы и в самом деле lingua franca мозга, такая точка зрения вполне оправдана.
Но теперь представим себе альтернативный химиоцентрический подход, согласно которому главные игроки – это нейромедиаторы. Согласно такому представлению электрические сигналы между нейронами способствуют распространению химических сигналов, а не наоборот. С химиоцентрической точки зрения даже сами электрические сигналы можно переосмыслить как химические процессы – ведь они строятся на ионах. Такая картина по стандартам современной нейрофизиологии ставит все с ног на голову, но ее тоже можно обосновать. Пожалуй, самый очевидный довод в ее пользу гласит, что нейромедиаторы и связанные с ними рецепторы исполняют особые функции, гораздо более многообразные, чем биоэлектрическая активность нервной системы per se; по некоторым данным, в мозге млекопитающих более ста различных нейромедиаторов, и каждый из них воздействует на какой-то тип рецепторов, а иногда на несколько[107]. Смысл потенциала активности меняется в зависимости от того, выработку каких нейромедиаторов он запускает и на что они воздействуют. В отдельных частях центральной нервной системы, например в сетчатке, нейромедиаторы выделяются вообще без потенциалов активности[108].
Воздействие нейромедиаторов определяется также факторами, не зависящими от нейронов: важная роль нейроглии заключается еще и в утилизации части выработанных нейромедиаторов. Если темп потребления нейромедиаторов глиальными клетками меняется, количество нейромедиаторов регулируется примерно так же, как уровень воды в ванне, если закрыть или открыть слив. Кроме того, глиальные клетки испускают собственные сигнальные молекулы, которые иногда называют «глиомедиаторы». Глиомедиаторы, как и нейромедиаторы, вызывают кальциевые сигналы и в нейронах, и в других глиальных клетках. Функциональное воздействие глиомедиаторов на поведение и когнитивные процессы – важная тема современных исследований[109].
Кроме того, на воздействие нейрохимикалий сильно влияет не зависящий от клеток процесс диффузии – пассивного распространения молекул, обусловленный их случайным движением в жидкости. Диффузия вызывает и спонтанную дисперсию капелек масла по поверхности лужи, и бесцельную пляску микроскопических частиц в молоке – так называемое броуновское движение. Она же влияет на постсинаптическую активность нейромедиаторов, причем весьма существенно; как именно это происходит, мы пока не понимаем, но знаем, что это совсем не похоже на упорядоченную передачу информации по контактам между нейронами, будто по проводам. Некоторые нейромедиаторы и большинство нейромодуляторов славятся именно своей способностью распространяться из синапсов посредством диффузии и воздействовать на далекие клетки, не связанные непосредственно с теми клетками, которые выработали эти вещества. Среди подобных диффундирующих молекул – дофамин, нейромедиатор, с которым мы уже сталкивались, когда обсуждали обучение за вознаграждение у обезьян. Значимость диффузии дофамина особенно видна на примере действия наркотиков – кокаина, амфетамина и риталина. Эти препараты блокируют молекулы, задача которых – убирать дофамин после того, как синапсы его выработали. Таким образом, наркотики способствуют распространению дофамина в мозге, в результате чего он затрагивает множество клеток