(London: HMSO), pp. 513–26, p. 516.
4. Grainger, J., et al. (2008), Trends in Cognitive Sciences 12:381–7.
5. Boden (2006), vol. 2, p. 899.
6. Rosenblatt, F. (1958), Psychological Review 65:386–408.
7. Rosenblatt, F. (1959), Two Theorems of Statistical Separability in the Perceptron (Buffalo: Cornell Aeronautical Laboratory), p. 424.
8. См. фото в: Rosenblatt, F. (1961), Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Report no. 1196-G-8, 15 March 1961 (Buffalo: Cornell Aeronautical Laboratory).
9. The New York Times, 7 July 1958.
10. McCorduck, P. (1979), Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence (San Francisco: W. H. Freeman), p. 87.
11. Rosenblatt (1961), p. 28.
12. Cowan, J. (1967), Nature 213:237.
13. Minsky, M. and Papert, S. (1969), Perceptrons: An Introduction to Computational Geometry (Cambridge, MA: MIT Press); Boden (2006), vol. 2, p. 915.
14. Olazaran, M. (1996), Social Studies of Science 26:611–59 утверждает, что влияние критики Минского и Паперта было преувеличено.
15. Marr (1982), pp. 13–14.
16. Там же, p. xvii.
17. Glennerster, A. (2007), Current Biology 17:R397–R399; Frisby, J. and Stone, J. (2012), Perception 41:1040–52; Stevens, K. (2012), Perception 41:1061–72.
18. Marr (1982), p. 361.
19. Frisby, J. and Stone, J. (2010), Seeing: The Computational Approach to Biological Vision (Cambridge, MA: MIT Press), p. 548. Джон Фрисби тщетно пытался объяснить мне идеи Марра, когда я был студентом-психологом в Шеффилдском университете. Вина лежит целиком на мне.
20. Marr (1982), p. 27.
21. Marr, D. (1976), Cold Spring Harbor Symposia on Quantitative Biology 40:647–62, p. 653; Marr, D. and Hildreth, E. (1980), Proceedings of the Royal Society: Biological Sciences 207:187–217; Martinez-Conde, S., et al. (2018), Trends in Neurosciences 41:163–5.
22. Greene, M. and Hansen, B. (2018), PLoS Computational Biology 14:e1006327.
23. Stevens (2012), p. 1071.
24. Chang, L. and Tsao, D. (2017), Cell 169:1013–28.
25. Landi, S. and Freiwald, W. (2017), Science 357:591–5.
26. Abbott, A. (2018), Nature 564:176–9, p. 179.
27. Kadipasaoglu, C., et al. (2017), PLoS One 12:e0188834.
28. Ponce, C., et al. (2019), Cell 177:999–1009.
29. Bashivan, P., et al. (2019), Science 364:eaav9436.
30. Carrillo-Reid, L., et al. (2019), Cell 178:447–57; Marshel, J., et al. (2019), Science 365:eaaw5202.
31. Rumelhart, D., et al. (eds.) (1986), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations; vol. 2: Psychological and Biological Models (Cambridge, MA: MIT Press); Anderson, J. and Rosenfeld, E. (eds.) (1998), Talking Nets: An Oral History of Neural Networks (Cambridge, MA: MIT Press).
32. Sejnowski, T. (2018), The Deep Learning Revolution (London: MIT Press), p. 118.
33. Crick, F. (1989), Nature 337:129–32, p. 130.
34. Crick, F. (1994), The Astonishing Hypothesis: The Scientific Search for the Soul (New York: Charles Scribner’s Sons), p. 186.
35. Sejnowski, T. and Rosenberg, C. (1987), Complex Systems 1:145–68.
36. Rumelhart, D. and McClelland, J. (1986), in D. Rumelhart, et al. (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations (Cambridge, MA: MIT Press), pp. 216–71.
37. Le, Q., et al. (2016), https://ai.google/research/pubs/pub38115.
38. Hochreiter, S. and Schmidhuber, J. (1997), Neural Computation 9:1735–80; LeCun, Y., et al. (2015), Nature 521:436–44.
39. Banino, A., et al. (2018), Nature 557:429–33.
40. Rajalingham, R., et al. (2018), Journal of Neuroscience 38:7255–69; Gangopadhyay, P. and Das, J. (2019), Journal of Neuroscience 39:946–8.
41. Marcus, G. (2015), in G. Marcus and J. Freeman (eds.), The Future of the Brain: Essays by the World’s Leading Neuroscientists (Oxford: Princeton University Press), pp. 204–15, p. 206.
42. Hassabis, D., et al. (2017), Neuron 95:245–58.
43. Silver, D., et al. (2016), Nature 529:484–9.
44. O ’Doherty, J., et al. (2003), Neuron 38:329–37.
45. Caron, S., et al. (2013),