В чем состоит основная идея интерпретации Эверетта? Чтобы изложить ее, напомним центральный парадокс квантовой теории в том виде, как он был описан в примерах с пороховой бочкой Эйнштейна (наполовину взорвавшейся, наполовину нетронутой) и котом Шредингера (наполовину живого, наполовину мертвого). Квантовая теория описывает систему, состоящую из кота и его окружения (коробки, в которой он находится, воздуха, которым он дышит, смертельного механизма, запускаемого радиоактивным атомом, и т. д.), посредством функции конфигурации. С каждой конфигурацией системы q связано (комплексное) число A (q), которое мы будем называть просто амплитудой конфигурации q. Что представляет собой конфигурация q, рассматриваемая в фиксированный момент времени t, и как она описывается? Например, можно было бы описать каждую возможную мгновенную конфигурацию кота и его окружения, указав положение в пространстве каждого из атомов{162} системы (атомов, из которых состоит кот, воздух, смертельный механизм и т. д.). Положение каждого атома определяется заданием трех его координат в пространстве (длина, ширина и высота). Обозначим число атомов в системе как N. Число N – гигантское. Напомним, что грамм вещества содержит около 600 тысяч миллиардов миллиардов (6 × 10²³) атомов. Таким образом, конфигурация всей системы определяется (гигантским) списком 3N чисел. Обозначение q указывает на такой список{163}.
Дорогой читатель, я чувствую, что вас может напугать перспектива рассмотрения величины A, зависящей от такого гигантского числа переменных. Тем более, что, как мы уже кратко отмечали, амплитуда A не обычное «действительное» число (как 2,5 или 3,1416), а комплексное число, которое, по существу, есть стрелка на плоскости, требующая для своего описания двух действительных чисел (например, длины стрелки и ее угла по отношению к направлению на восток). Чтобы наглядно продемонстрировать значение амплитуды A, мы можем использовать описание, введенное автором в предыдущей книге{164}. Оно состоит из используемой (мысленно) техники кинематографии.
Во-первых, каждая конфигурация системы q представляется фотографическим (голографическим{165}) изображением системы в рассматриваемый момент времени. С каждым q, т. е. с каждым фотографическим изображением системы мы хотим ассоциировать определенную амплитуду A, задаваемую стрелкой на плоскости, которая имеет определенную длину и указывает в определенном направлении. С каждым направлением стрелки можно связать особый оттенок цвета на «цветовом круге»: например, мы связываем с направлением на восток (на географической карте) оранжевый цвет и затем, по мере изменения направления по часовой стрелке, изменяем цвет, проходя последовательно от оранжевого (восток) к красному (юго-восток), фиолетовому (юг), затем к индиго (юго-запад), синему (запад), сине-зеленому (северо-запад), зеленому (север) и, наконец, к желтому (северо-восток). При продолжении вращения стрелки с северо-востока на восток оттенок непрерывно изменяется от желтого к оранжевому, так что мы возвращаемся в исходное положение, разложив полный спектр оттенков по кругу. Мы уже говорили, что каждой амплитуде A соответствуют длина и направление. С длиной мы можем ассоциировать интенсивность света (низкую интенсивность, если стрелка короткая, и высокую, если стрелка длинная), а с направлением можно ассоциировать оттенок цвета (например, оранжевый). Таким образом, мы можем зафиксировать каждую комплексную амплитуду цветом, имеющим как конкретную интенсивность, так и конкретный оттенок: например, оранжевый высокой интенсивности, или красный средней интенсивности, или зеленый низкой интенсивности и т. д.