Мир по Эйнштейну. От теории относительности до теории струн - страница 22

Шрифт
Интервал

стр.



Поскольку трудно представить себе такой четырехмерный континуум, рассмотрим более простой случай пространства-времени, имеющий лишь три измерения: два пространственных и одно временное. Такое трехмерное пространство-время связано с «миром» мелких насекомых, живущих на плоской поверхности: например, это может быть поверхность пола в здании. Чтобы определить каждое событие пространства-времени этих насекомых, мы должны задать три числа или, другими словами, три координаты: длину и ширину, задающие пространственное положение события на полу, и дату, задающую временное положение. Тогда можно представить себе это пространство-время, идентифицируя его с обычным трехмерным пространством: достаточно определить первые две координаты, продольную и поперечную, пространства-времени с продольной и поперечной координатами насекомых в обычном трехмерном пространстве, а третью координату пространства-времени – дату – отождествить с вертикальной координатой в обычном пространстве. Заметим походя, что таким образом мы воспроизводим образ, созданный Прустом в процитированном выше заключительном предложении романа «Обретенное время», в котором Время осознается как вертикальное измерение, символизированное ходулями, и добавляется к обычным пространственным измерениям{45}.

Поскольку понятие пространства-времени заключает в себе всю физическую новизну, теорию относительности, полезно попытаться привыкнуть к этой концепции, которая по существу представляет собой основное отличие от нашего обычного представления о реальности. Например, это может быть осуществлено исходя из обычной идеи, что «мир» насекомых, живущих на полу, состоит из последовательности «снимков», каждый из которых представляет «состояние пола» в определенный момент времени. Каждый «снимок» описывает расположение на полу всех насекомых, живущих там, в определенный момент времени. Это пространственное расположение в данный момент может быть полностью передано одной фотографией, одним «снимком» поверхности пола. Затем трехмерное пространство-время насекомых, живущих на полу, получается путем вертикальной укладки непрерывной последовательности этих снимков, каждый из которых представляет собой состояние пространства в некоторый момент времени, аналогично колоде карт, представляющих различные моменты. Высота расположения каждого снимка в стопке пропорциональна соответствующей ему дате.

Каждому насекомому соответствует «пятно» на каждой фотографии в стопке, и каждому моменту времени соответствует по одному пятну на каждого насекомого. Жизнь каждого насекомого составляет, таким образом, непрерывную последовательность пятен, которые складываются в трубку (жирную линию) в пространстве-времени. Это и есть ходули из прустовской аллегории. Если насекомое остается на полу в покое, его «пространственно-временная трубка» (или «мировая трубка» Минковского) поднимается вертикально, т. е. ортогонально горизонтальным направлениям, представляющим «пространство», где живут насекомые. Если же насекомое движется, его пространственно-временная трубка будет отклоняться от вертикали. Чем быстрее оно движется, тем больше наклон трубки. Если мы рассматриваем, например, насекомое (муравья), которое, как водитель гоночного автомобиля «Формулы-1», движется по кругу с большой скоростью, его пространственно-временная трубка представляет спираль с вертикальной осью. Я предлагаю читателю потренировать воображение, представляя «пространственно-временные фигуры», формирующиеся при более сложных перемещениях насекомых – от столкновения двух насекомых до фигур энтомологической хореографии и, наконец, сражений между кланами насекомых.

Читатель может заметить, между прочим, что подобная реализация трехмерного пространства-времени является обобщением так называемых «схем перемещений», которые в свое время использовались для диспетчерского управления передвижением поездов. Рассмотрим, например, два поезда, находящихся на одном пути и отправляющихся с двух вокзалов навстречу друг другу в разные моменты времени и с разными скоростями. Необходимо определить, где и когда два поезда пересекутся. Простой способ решения заключается в том, чтобы представить историю перемещения поездов на двумерной схеме, где горизонтальное направление представляет собой расстояние вдоль пути, а вертикальное направление – время. Эта схема является примером двумерного пространства-времени с одним пространственным измерением (продольным направлением) и одним временным измерением. В таком пространстве-времени каждый поезд описывается непрерывной линией, состоящей из прямых отрезков, каждый из которых имеет тот или иной наклон по отношению к вертикали в зависимости от скорости поезда (неподвижный поезд описывается вертикальным отрезком). Событие, соответствующее пересечению двух поездов, определяет «точку пространства-времени», в которой линии двух поездов пересекаются: горизонтальная проекция этой «точки», т. е. его первая координата, определяет расстояние вдоль пути до того места, где поезда пересекаются в пространстве, в то время как вертикальная проекция, т. е. его вторая координата, определяет время, в которое это пересечение происходит.


стр.

Похожие книги