Конечно, это не может длиться вечно. И что же, однажды эта полезная энергия иссякнет? Уменьшив масштаб, можно представить себе всю Вселенную в виде механических часов, которые постепенно замедляются. Но как же это возможно, если количество энергии всегда остается неизменным? Почему она не может циркулировать бесконечно – пусть даже меняя форму? Оказывается, что ответ кроется в статистике и теории вероятности и в том, что известно как второй закон термодинамики. Однако, если вы не против, я отложу этот разговор до главы 6. А сейчас давайте двинемся дальше – от энергии к материи.
Когда мы говорим о природе материи, надо понимать, что такое масса. На самом элементарном уровне масса тела – это мера количества содержащегося в нем «вещества».
В обыденной жизни часто полагают, что масса тела – это то же, что его вес. Для земных условий это нормально, поскольку эти две величины пропорциональны друг другу. Однако в космосе у тела нет веса, но масса все же существует.
Но даже масса не всегда остается постоянной. Чем быстрее движется тело, тем больше увеличивается его масса. Такие вещи не преподают в школе, а Исаак Ньютон был бы этим поражен, потому что это – еще одно следствие природы пространства-времени с точки зрения специальной теории относительности Эйнштейна. Если вы задаете себе вопрос, почему мы не видим этого в реальной жизни, так это потому, что мы обычно не наблюдаем скоростей, близких к скорости света, когда этот эффект становится заметным. Например, тело, движущееся со скоростью 87 % скорости света, будет иметь массу, в два раза превышающую массу того же тела, но в покое. А масса тела, движущегося со скоростью 99,5 % скорости света, будет больше в десять раз. Но даже самая быстрая пуля летит со скоростью всего лишь 0,0004 % скорости света, а это означает, что мы не видим релятивистских эффектов или изменений в массе движущихся тел.
Увеличение массы тела по мере приближения его скорости к скорости света не означает, что оно становится больше по размеру или что увеличивается количество составляющих его атомов; скорее, это значит, что возрастает его импульс (его становится труднее остановить) по сравнению с тем, которого можно было ожидать, зная массу этого тела в состоянии покоя. Согласно механике Ньютона импульс тела – это произведение его массы на скорость, а значит, он увеличивается при росте скорости: если скорость тела возрастет в два раза, то же произойдет и с импульсом. Однако ньютоновская механика ничего не говорит об увеличении массы при движении тела. Специальная теория относительности дает нам иную (и более корректную), «релятивистскую» формулу импульса, которая не пропорциональна скорости тела. На самом деле при достижении телом скорости света его импульс становится бесконечным.
Все это помогает понять, почему никакое тело не может двигаться быстрее скорости света (это еще один вывод из специальной теории относительности). Подумайте, сколько энергии требуется, чтобы ускорить движение тела. При низкой скорости эта энергия по мере ускорения тела трансформируется в кинетическую (энергию движения). Однако по мере приближения к скорости света ускорять движение тела становится все труднее и все больше энергии, прилагаемой к телу, уходит на увеличение его массы. Это отражается в самой известной физической формуле E = mc>2, которая связывает массу (m) и энергию (E) (а также скорость света c в квадрате) и позволяет предположить, что эти две величины могут трансформироваться друг в друга. В каком-то смысле массу можно представить как застывшую энергию. А поскольку квадрат скорости света – огромная величина, небольшая масса может конвертироваться в значительное количество энергии или, наоборот, большое количество энергии застывает в виде совсем небольшой массы.
Таким образом, закон сохранения энергии скорее сводится к закону сохранения энергии и массы: все количество энергии и вся масса во Вселенной – величина, постоянная во времени. Нигде эта идея не видна так явно и не является столь важной, как в субатомном мире, где