Именно так обстоит дело с гемоглобином. Комплекс железа с протопорфирином (замещенным порфином) имеет плоское строение, КЧ равно 4. Кроме того, с одной стороны к иону железа присоединена молекула белка (глобин), но шестое место в координационной сфере свободно. Это место и занимает молекула кислорода, переносимого гемоглобином в процессе дыхания. Если бы комплекс железа имел КЧ, равное 6, и ион железа был бы изолирован от среды, гемоглобин не мог бы переносить кислород, необходимый для дыхания клеток.
Как видно, даже геометрические особенности координационных соединений имеют жизненно важное значение. Одной из самых характерных особенностей химии координационных соединений является глубокое различие между свойствами простого иона и иона, окруженного лигандами. Иначе говоря, свойства комплексного иона существенно зависят от химической природы как центрального иона, так и лигандов (табл. 4).
Таблица 4. Сравнение свойств комплексов и гидратированных ионов тех же металлов
Ион металла | Лиганд | Свойство комплексов с данным лигандом | Свойства гидротированного иона
Медь | Аммиак, амины | Реагируют с целлюлозой, темно-синяя окраска; бурно разлагают пероксид водорода | Не реагируют с целлюлозой, слабоголубая окраска; медленно разлагают пероксид водорода
Железо | Порфин (его производные) | Переносят кислород. Энергично разлагают пероксид водорода, ускоряют окисление различных веществ | Не способен переносить кислород. Окислительные свойства выражены относительно слабо
Цинк | Белки То же | Ускоряют разложение гидрокарбонатов. Способствуют усвоению белков | Не влияет на разложение гидрокарбонатов и усвоение белков
Молибден | Белки | Способствуют усвоению бактериями атмосферного азота | Не влияет на усвоение атмосферного азота
Магний | Производное порфина | Хлорофилл обусловливает превращение диоксида углерода и воды в углеводы (фотосинтез) | Не ускоряет фотосинтез
Ионы металлов, не связанные с лигандами, встречаются редко. В сущности, химик может наблюдать свойства такого "простого" иона металла разве что при очень высоких температурах в газообразной среде, нагревая ту или иную соль до температур порядка тысяч градусов. В растворах солей ионы металлов связаны с молекулами воды (гидратированы) и, следовательно, находятся там в виде комплексов. Но заменим молекулы воды на молекулы аммиака, например в растворе соли меди CuCl>2. Как мы уже знаем, при этом получится темно-синий комплекс, имеющий свойства, которых нет у гидратированного иона.
Гидратированные ионы слабо окрашены, они легко взаимодействуют с ионами карбоната, образуя осадок карбоната меди, практически не реагируют с целлюлозой. А вот комплексные ионы Cu(NH>3)>4>2+ с ионами карбонатов СО>3>2- осадка не образуют, а целлюлозу (например, вату) в щелочной среде растворяют (на этом основан один из способов получения искусственного шелка). Ионы цинка в виде гидратного комплекса не влияют на разложение кислых солей угольной кислоты, а комплексное соединение цинка, содержащееся в крови, ускоряет распад гидрокарбонатов и выделение из крови в легкие диоксида углерода. Не будь этого комплекса в организме, мы не могли бы дышать, так как освобождение крови от углекислоты происходило бы слишком медленно. Наконец, если бы исчезло комплексное соединение магния — хлорофилл, то растения не могли бы развиваться и жизнь на Земле, лишившись притока поддерживающей ее солнечной энергии, прекратилась бы! Отсюда следует, что, изменяя состав комплексов, природа может в очень широких пределах варьировать свойства соединений данного металла и для решения множества биохимических задач обходиться относительно небольшим числом металлов.
Суммируем вкратце, что мы узнали о том, каким образом действуют ионы металлов в клетках организма.
Металлы находятся в клетках в виде комплексных соединений с различными органическими, веществами: белками, различными производными порфина и др. Комплексные ионы присоединяют к себе частицы-лиганды так, что получается правильная геометрическая форма: треугольник, тетраэдр, октаэдр и т. п. Одно или два места около иона могут остаться свободными, и туда попадают другие молекулы, например молекула кислорода в частицу гемоглобина. Все лиганды занимают определенные положения и относительно иона, и относительно друг друга; они, как говорят, правильно ориентированы в пространстве.