Два эти отдельных эксперимента наглядно продемонстрировали фундаментальную истину: падающий вес производит работу[32], необходимую для производства требуемого объема тепла. Джоуль смог определить, сколько работы требуется, чтобы произвести необходимое количество тепла[33], таким образом давая одну из точнейших оценок механического эквивалента тепла. В 1843 году он заявляет:
«Количество тепла, необходимое для увеличения температуры одного фунта воды на один градус по шкале Фаренгейта, равно и может быть преобразовано в механическую силу, способную поднять 838 фунтов (вертикально) на высоту одного фута».
Усердный в своих попытках[34], Джоуль проверяет результаты несколько раз и получает несколько значений: 820, 814, 795, 760 и другие.
В 1845 году, то есть в том же году, когда Майер опубликовал более подробную работу на основе своего оригинального труда за свой счет, Джоуль объявил о среднем значении 817 футо-фунтов, а в 1850 году, после еще большего количества измерений, он остановился на значении 772 футо-фунта, которое на 1 % отличается от современного — 778 футо-фунтов (Прим. ред. — сегодня это 427 килограмм-сила-метр в Международной системе измерений).
Природа установила невероятно высокую «механическую цену» на количество тепла, которое требуется, к примеру, чтобы вращать гребное колесо в воде. Для большей уверенности рассмотрим количество тепла, которое вы производите, энергично помешивая некий напиток, — вы получите смехотворно малое значение[35]. И все же, без цифровых термометров под рукой Джоуль смог получить удивительно точный результат.
Ни опубликованные отчеты Джоуля, ни переговоры на научных встречах не вызвали интереса к его работам. В 1847 году Джоуль выступает с докладом на Оксфордской встрече Британской ассоциации продвижения науки. Председатель попросил его не растягивать свою речь, так как ожидалось, что она вызовет мало энтузиазма у аудитории.
Джоуль позднее так опишет это событие:
«Хотя я старался сделать доклад интересным, никто не стал бы его комментировать, если бы один молодой человек не начал обсуждение, и его интеллектуальные наблюдения не пробудили бы живой интерес к новой теории».
Молодым человеком был Уильям Томсон, которому тогда было всего двадцать три года.
Уильям Томсон (позже лорд Кельвин) (1824–1907) быстро понял значение работ Джоуля. Это не означало, что он немедленно поверил результатам Джоуля. Наоборот, заключения Джоуля противоречили вере Томсона в теплородную теорию и работу Сади Карно (1796–1832), другого поклонника теплородной теории, который настаивал, что при механической работе тепловых двигателей тепло сохранялось; при работе теплового двигателя потери тепла никогда не происходят. Это, конечно, противоречило идеям Джоуля об эквивалентности тепла и работы, которые гласили, что процесс механической работы теплового двигателя должен привести к потреблению тепла, а не сохранению.
Это следует из нашего обсуждения экспериментов Джоуля, в которых он показал, что работа, производимая падающим весом, приводит к производству тепла в соответствии с «эквивалентностью»: подъем веса назад на начальную высоту потребовал бы потребления того же самого количества тепла. Действительно, в 1848 году Джоуль сказал Томсону, что он стремится предоставить «доказательство преобразования тепла в (механическую) энергию». Джоуль, в отличие от Карно, полагал, что тепло может быть преобразовано в работу и что это фундаментальная истина теории теплового двигателя. Кроме того, как и Румфорд, Джоуль полагал, что тепло — это движение, говоря, что он всегда «склонялся к теории, которая рассматривает тепло как движение среди частиц вещества».
В конечном счете Томсон стал одним из самых ярых сторонников Джоуля, объявив в 1854 году в обращении к Британской ассоциации, что открытия Джоуля в области тепла и работы «привели к самой большой реформе в области физики со времен Ньютона». В 1866 году Джоуля наградили медалью Копли; Майер получил эту награду пять лет спустя.
Усилия Майера и Джоуля имели большое значение для изучения природы тепла. Теорию Румфорда о тепле как форме «движения» теперь рассматривали с точки зрения движения частиц, из которых состоит вещество. Зафиксированный механический эквивалент тепла раз и навсегда позволил определить тепло просто как иную форму энергии и демонстрировал, что энергия, по крайней мере в этом отношении, сохраняется. Однако понимание сохранения энергии достигает нового уровня благодаря Герману фон Гельмгольцу.